
Wrapper for Object-Oriented Programming in Erlang
Organisation: Copyright (C) 2008-2021 Olivier Boudeville

Contact: about (dash) wooper (at) esperide (dot) com

Creation date: Sunday, August 17, 2008

Lastly updated: Saturday, February 20, 2021

Version: 2.0.10

Dedication: Users and maintainers of the WOOPER layer, version 2.0.

Abstract: The role of the WOOPER layer is to provide free software object-
oriented facilities to the Erlang language.

The latest version of this documentation is to be found at the official WOOPER
website (http://wooper.esperide.org).

The documentation is also mirrored here.

1

http://wooper.esperide.org
http://wooper.esperide.org
https://olivier-boudeville.github.io/Ceylan-WOOPER/wooper.html

Table of Contents
Wrapper for Object-Oriented Programming in Erlang 1

Overview . 4
Understanding WOOPER in Two Steps 4

Motivations & Purpose . 4
The WOOPER Mode of Operation in a Nutshell 4
Example . 5

Why Adding Object-Oriented Capabilities To Erlang? 8
How to Use WOOPER: Detailed Description & Concept Mappings 9

Classes . 9
Instances . 10
Methods . 11
State Management . 28
Multiple Inheritance & Polymorphism 36
Life-Cycle . 38
Passive Instances . 45

Miscellaneous Technical Points . 46
Helper vs Static . 46
Calling a Method Clause from Another 46
Integrated Call APIs . 47
Methods Not Returning Anything of Interest 48
Exception-Throwing Methods . 49
delete_any_instance_referenced_in/2 50
EXIT Signals / Messages . 51
DOWN Messages for Process Monitors 51
Node Monitors . 52
A bit of Introspection . 52
Developer Guidelines . 52
Class Developer Cheat Sheet . 53
Source Editors . 53
Similarity With other Languages . 54
WOOPER limitations . 54

WOOPER Example . 55
Class implementations . 55
Tests . 55

Good Practices . 57
Troubleshooting . 58

Debug Mode . 58
"No attribute declaration found" whereas a class_attributes de-

fine exists . 58
Compilation Error Pointing to wooper_for_classes.hrl . . . 58
General Case . 58

Current Stable Version & Download . 61
Prerequisites . 61
Using Cutting-Edge GIT . 61
Using OTP-Related Build/Runtime Conventions 61
Using Hex . 63
Testing WOOPER . 63

Version History & Changes . 65

2

Version 2.0 [current stable] . 65
Version 1.x . 65
Version 1.0 . 65
Version 0.4 . 66
Version 0.3 . 66
Version 0.2 . 66
Version 0.1 . 67

WOOPER Inner Workings . 68
General Principles . 68
Method Virtual Table . 68
Attribute Table . 69

Issues & Planned Enhancements . 70
Licence . 71
Sources, Inspirations & Alternate Solutions 72
Support . 73
Please React! . 73
Ending Word . 73

3

Overview
WOOPER, which stands for Wrapper for Object-Oriented Programming in Erlang, is
a free software lightweight layer on top of the Erlang language that provides constructs
dedicated to Object-Oriented Programming (OOP).

This documentation applies to the WOOPER 2.0 version.
WOOPER is a rather autonomous part of the Ceylan project (yet it uses Myriad and

is used by Traces).
The project repository is located here.
At least a basic knowledge of Erlang is expected in order to use WOOPER.

Understanding WOOPER in Two Steps
Here is a class definition, and here is an example of code using it. That’s it!

Now, let’s discuss these subjects a bit more in-depth.

Motivations & Purpose

Some problems may almost only be tackled efficiently thanks to an object-oriented
modelling.

The set of code and conventions proposed here allows to benefit from all the main
OOP features (including polymorphism, life cycle management, state management,
passive or active instances, and multiple inheritance) directly from Erlang (which na-
tively does not rely on the OOP paradigm), so that - in the cases where it makes sense
- an object-oriented approach at the implementation level can be easily achieved.

The WOOPER Mode of Operation in a Nutshell

The WOOPER OOP concepts translate into Erlang constructs according to the follow-
ing mapping:

WOOPER
base concept

Corresponding mapping to Erlang

class defini-
tion

module (typically compiled in a .beam file)

active in-
stance

process

active in-
stance refer-
ence

process identifier (PID)

passive
instance

opaque term

new operators WOOPER-provided functions, making use of user-defined
construct/N functions (a.k.a. the constructors)

delete opera-
tor

WOOPER-provided function, making use of any user-defined
destruct/1 (a.k.a. the destructor)

... continued on next page

4

http://erlang.org
http://en.wikipedia.org/wiki/Object-oriented_programming
https://github.com/Olivier-Boudeville/Ceylan
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat_test.erl

WOOPER
base concept

Corresponding mapping to Erlang

member
method
definition

module function that respects some conventions (re-
quest/oneway/static method)

member
method
invocation

sending of an appropriate inter-process message

method look-
up

class-specific virtual table taking into account inheritance transpar-
ently

instance state instance-specific datastructure storing its attributes, and kept by the
instance-specific WOOPER tail-recursive infinite loop

instance
attributes

key/value pairs stored in the instance state

class (static)
method

module function that respects some conventions

In practice, developing a class with WOOPER mostly involves including the wooper.hrl
header file and respecting the WOOPER conventions detailed below.

Example

Here is a simple example of how a WOOPER class can be defined and used.
It shows new/delete operators, method calling (both request and oneway), and

inheritance.
A cat is here a viviparous mammal, as defined below (this is a variation of our more

complete class_Cat.erl example):

-module(class_Cat).

% Optional:
-define(class_description,"Models a domestic cat").

% Determines what are the direct mother classes of this class (if any):
-define(superclasses,[class_Mammal,class_ViviparousBeing]).

% Declaration of class-specific attributes:
% (optional, yet recommended for clarity)
-define(class_attributes,[

{meow_style,style(),const,"the kind of meow to expect"},
{whisker_color,"the color of this cat’s whiskers"}]).

% Allows to define WOOPER base variables and methods for that class:
-include("wooper.hrl").

% No need to export constructors, destructor or methods.
% Type specifications remain optional (yet are recommended).

% Constructs a new Cat.

5

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat.erl

construct(State,Age,Gender,FurColor,WhiskerColor) ->
% First the direct mother classes:
MammalState = class_Mammal:construct(State,Age,Gender,FurColor),
ViviparousMammalState = class_ViviparousBeing:construct(MammalState),
% Then the class-specific attributes; returns an updated state:
setAttribute(ViviparousMammalState,whisker_color,WhiskerColor).

destruct(State) ->
io:format("Deleting cat ~w! (overridden destructor)~n", [self()]),
State.

% Member methods.

% A cat-specific request, supposing the developer missed the fact
% that it is a const one (no problem):
getWhiskerColor(State)->

wooper:return_state_result(State,?getAttr(whisker_color)).

% A (non-const) oneway, with a spec:
-spec setWhiskerColor(wooper:state(),foo:color()) -> oneway_return().
setWhiskerColor(State,NewColor)->

NewState = setAttribute(State, whisker_color, NewColor),
wooper:return_state(NewState).

% Overrides any request method defined in the Mammal class:
% (const request)
canEat(State,soup) ->

wooper:const_return_result(true);

canEat(State,croquette) ->
wooper:const_return_result(true);

canEat(State,meat) ->
wooper:const_return_result(true);

canEat(State,_OtherFood) ->
wooper:const_return_result(false).

% Static method:
get_default_whisker_color() ->

wooper:return_static(white).

Straightforward, isn’t it? We will discuss it in-depth, though.
To test this class (provided that GNU make and the latest stable version of Erlang

are available in one’s environment, see Prerequisites for more information), one can
easily install Ceylan-WOOPER, which depends on Ceylan-Myriad, hence is to be
installed first:

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Myriad.git myriad
$ cd myriad && make all && cd ..

6

http://myriad.esperide.org

$ git clone https://github.com/Olivier-Boudeville/Ceylan-WOOPER.git wooper
$ cd wooper && make all

(for OTP compliance, using short names, such as myriad or wooper, for clones
rather than long ones, such as Ceylan-Myriad or Ceylan-WOOPER, is recom-
mended)

Running the cat-related example just then boils down to:

$ cd examples && make class_Cat_run

In the examples directory, the test defined in class_Cat_test.erl should run against
the class defined in class_Cat.erl, and no error should be detected:

Running unitary test class_Cat_run (second form)

--> Testing module class_Cat_test.
[..]
Deleting cat <0.80.0>! (overridden destructor)
Deleting mammal <0.80.0>! (overridden destructor)
Actual class from destructor: class_Cat.
Deleting mammal <0.82.0>! (overridden destructor)
This cat could be created and be synchronously deleted, as expected.
--> Successful end of test.
(test finished, interpreter halted)

That’s it!
Now, more in-depth explanations.

7

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat.erl

Why Adding Object-Oriented Capabilities To Erlang?
Although applying blindly an OOP approach while using languages based on other
paradigms (Erlang ones are functional and concurrent; the language is not specifically
targeting OOP) is a common mistake, there are some problems that may be deemed
inherently "object-oriented", i.e. that cannot be effectively modelled without encapsu-
lated abstractions sharing behaviours.

Examples of this kind of systems are multi-agent simulations. If they often need
massive concurrency, robustness, distribution, etc. (Erlang is particularly suitable for
that), the various types of agents have also often to rely on similar kinds of states and
behaviours, while still being able to be further specialised on a per-type basis.

The example mentioned through the current guide is an illustration1 of the inter-
acting lives of numerous animals of various species. Obviously, they have to share
behaviours (ex: all ovoviviparous beings may lay eggs, all creatures can live and die,
all have an age, etc.), which cannot be mapped easily (read: automatically) to Erlang
concepts without adding some generic constructs.

WOOPER, which stands for Wrapper for OOP in Erlang, is a lightweight yet effec-
tive (performance-wise, but also regarding the user-side developing efforts) means of
making these constructs available, notably in terms of state management and multiple
inheritance.

The same programs could certainly be implemented without such OOP constructs,
but at the expense of way too much manually-crafted, specific (per-class) code. This
process would be tedious, error-prone, and most often the result could hardly be main-
tained.

1This example is not a simulation, it is just a multi-agent system. For real, massive, discrete-time simula-
tions of complex systems in Erlang (using WOOPER), one may refer to Sim-Diasca instead (a free software
simulation engine).

8

http://www.sim-diasca.com

How to Use WOOPER: Detailed Description & Concept Mappings
Classes

Classes & Names A class is a blueprint to create objects, a common scheme de-
scribing the state and behaviour of its instances, i.e. the attributes and methods that all
objects created from that class shall support.

With WOOPER, each class has a unique name, such as class_Cat.
To allow for encapsulation, a WOOPER class is mapped to an Erlang module,

whose name is by convention made from the class_ prefix followed by the class
name, in the so-called CamelCase: all words are spelled in lower-case except their first
letter, and there are no separators between words, like in: ThisIsAnExample.

So a class modeling, for example, a cat should translate into an Erlang module
named class_Cat, thus in a file named class_Cat.erl. At the top of this file,
the corresponding module would be therefore declared with: -module(class_Cat)..

Similarly, a pink flamingo class could be declared as class_PinkFlamingo, in
class_PinkFlamingo.erl, which would include a -module(class_PinkFlamingo).
declaration.

Note that, unless specifically ambiguous, for the sake of brevity classes are often
referred to by their name without their class_ prefix.

For example PinkFlamingo can be understood as a shorthand for the actual
classname, class_PinkFlamingo.

Class Description A class should not be implemented without adding at least a short
description of it. Rather than describing it through a mere in-code comment (hence only
addressed to the class maintainer), a better approach is to used the class_description
define, like in:

-define(class_description,"Class in charge of implementing the "
"Foobar service.").

Doing so allows that information to be available to humans and tools alike2.

Inheritance & Superclasses A WOOPER class can inherit from other classes, in
which case the state and behaviour defined in the mother classes will be readily avail-
able to this child class.

Being in a multiple inheritance context, a given class can have any number ([0..n])
of direct mother classes, which themselves may have their mother classes, and so on.
This is to lead to a class hierarchy that forms a direct, acyclic graph.

The direct mother classes (and only them) are to be declared in WOOPER thanks to
the superclasses define. For example, a class with no mother class should specify,
once having declared its module:

-define(superclasses,[]).

2More generally, over time we tend to see any remaining comment as a potential candidate to "metadata
promotion". This way, the corresponding information can be used in multiple contexts (ex: when generating
documentation from code).

9

http://en.wikipedia.org/wiki/CamelCase

In this particular case, with no mother class to be declared, this superclasses
define could be omitted as a whole (yet this would be probably less obvious to the
reader).

As for our cat, this superb animal could be modelled both as a mammal (itself a
specialised creature) and a viviparous being3. Hence its direct inheritance could be
defined as:

-define(superclasses,[class_Mammal,class_ViviparousBeing]).

The superclasses (direct mother classes) of a given class can be known thanks to its
get_superclasses/0 static method4 (automatically defined by WOOPER):

> class_Cat:get_superclasses().
[class_Mammal,class_ViviparousBeing]

Instances

Instance Mapping With WOOPER, which focuses on multi-agent systems, all ac-
tive instances of a class are mapped to Erlang processes (one WOOPER instance is
exactly one Erlang process).

They are therefore, in UML parlance, active objects (each has its own thread of
execution, they may apparently "live" simultaneously5).

Such an instance process simply loops over its state forever, waiting for incoming
method calls and processing them one after the other.

Instance State Another common OOP need is to rely on state management and
encapsulation: each instance should be stateful, have its state fully private, and be
able to inherit automatically the data members defined by its mother classes.

In WOOPER, this is obtained thanks to a per-instance associative table, whose
keys are the names of attributes and whose values are the attribute values. This will be
detailed in the state management section.

3Neither of them is a subset of the other, these are mostly unrelated concepts, at least in the context of
that example! (ex: a platypus is a mammal, but not a viviparous being, right?).

4Note that, to anticipate a bit, a static method (i.e. a class method that does not ap-
ply to any specific instance of it) of a class X is nothing more than an Erlang function, ex-
ported by WOOPER from the corresponding class_X module and which would return its result
R as: wooper:return_static(R). So the corresponding type specification would be -spec
get_superclasses() -> static_return([wooper:classname()]). here.

5For some uses, such a concurrent feature (with active instances) may not be needed, in which case
one may prefer dealing with purely passive instances (implemented as mere Erlang terms instead of Erlang
processes).

To anticipate a bit, instead of using new/N (returning the PID of a new process instance looping over its
state), one may rely on new_passive/N, returning to the caller process an opaque term corresponding to
the initial state of a new passive instance, a term that can be then stored and interacted upon at will. See the
passive instance section for more details. Most of this document concentrates on active instances, so, unless
specified otherwise, just mentioning instance by itself refers to an active one.

10

Methods

They can be either:

• member methods: they applies to a specific instance (of a given class), like in:
MyCatPid ! declareBirthday

• or static methods: they are general to a class, not targeting specifically an in-
stance of it, like in: class_Cat:get_default_mew_duration()

Unless specified otherwise, just mentioning method by itself refers to a member
method. Static methods are discussed in their specific subsection (see Static Methods).

Member methods can be publicly called by any process (be it WOOPER-based or
not) - provided of course it knows the PID of that instance - whether locally or remotely
(i.e. on other networked computers, like with RMI or with CORBA, or directly from
the same Erlang node), distribution (and parallelism) being seamlessly managed thanks
to Erlang.

Member methods (either inherited or defined directly in the class) are mapped to
specific Erlang functions that are triggered by Erlang messages.

For example, our cat class may define, among others, following member methods
(actual arities to be discussed later):

• canEat, taking one parameter specifying the type of food, and returning whether
the corresponding cat can eat that kind of food; here the implementation should
be cat-specific (i.e. specific to cats and also, possibly, specific to this very single
cat), whereas the method signature shall be shared by all beings

• getWhiskersColor, taking no parameter, returning the color of its whiskers;
this is indeed a purely cat-specific method, and different cats may have different
whisker colors; as this method, like the previous one, returns a result to the caller,
it is a request method

• declareBirthday, incrementing the age of our cat, not taking any parameter
nor returning anything; it will be therefore be implemented as a oneway method
(i.e. not returning any result to the caller, hence not even needing to know it),
whose call is only interesting for its effect on the state of this cat: here, making
it one year older

• setWhiskerColor, assigning the specified color to the whiskers of that cat
instance, not returning anything (another oneway method, then)

Declaring a birthday is not cat-specific, nor mammal-specific: we can consider it
being creature-specific. Cat instances should then inherit this method, preferably indi-
rectly from the class_Creature class, in all cases without having to specify any-
thing, since the superclasses define already implies it (implying one time for all
that cats are creatures and thus, unless specified otherwise, are and behave as such). Of
course this inherited method may be overridden at will anywhere in the class hierarchy.

We will discuss the definition of these methods later, but for the moment let’s de-
termine their signatures and declarations, and how we are expected to call them.

11

Method Declaration All cat-specific methods (member or static ones) are to be de-
fined in the context of class_Cat (defined, as mentioned, in class_Cat.erl).
Defining a method automatically declares it, so no method should be explicitly ex-
ported (knowing WOOPER is to take care of it).

The arity of member methods should be equal to the number of parameters they
should be called with, plus one that is automatically managed by WOOPER and that
corresponds to the (strictly private, never exported or sent to anyone) state of that in-
stance.

This State variable defined by WOOPER can be somehow compared to the self
parameter of Python, or to the this hidden pointer of C++. That state is automatically
kept by WOOPER instances in their main loop, and automatically prepended, as first
element, to the parameters of incoming method calls.

Note
To respect the principle of least astonishment, WOOPER demands that this
first parameter is named exactly State (doing otherwise will result in a
compile-time WOOPER error being issued).

Method Invocation Let’s suppose that the MyCat variable designates an (active)
instance of class_Cat. Then this MyCat reference is actually just the PID of the
Erlang process hosting this instance; so it may be named MyCatPid instead for addi-
tional clarity.

All member methods (regardless of whether they are defined directly by the actual
class or inherited) are to be called from outside this class thanks to a properly formatted
Erlang message, sent to the targeted instance via its PID.

When the method is expected to return a result (i.e. when it is a request), the caller
must specify in the corresponding message its own PID, so that the instance knows to
whom the result should be sent.

Oneways, as for them, are to be triggered with no caller information6, since no
answer is to be sent back.

Therefore the self() parameter in the call tuples for requests below corresponds
to the PID of the caller, while MyCat is bound to the PID of the target instance.

The three methods previously discussed would indeed be called that way:

% Calling the canEat request of our cat instance:
MyCat ! {canEat,soup,self()},
receive

{wooper_result,true} ->
io:format("This cat likes soup!!!");

{wooper_result,false} ->
io:format("This cat does not seem omnivorous.")

end,

% A parameter-less request:
MyCat ! {getWhiskersColor,[],self()},
receive

6Should the caller PID be nevertheless of use for a given oneway (this may happen), this information
shall be listed among its expected parameters.

12

{wooper_result,white} ->
io:format("This cat has normal whiskers.");

{wooper_result,blue} ->
io:format("What a weird cat...")

end,

% A parameter-less oneway:
MyCat ! declareBirthday.

Method Name Methods are designated by their name (as an atom), i.e. the one
specified when defining them (ex: canEat).

We recommend that their name is spelled in CamelCase and remains short and de-
scriptive, and start with a verb, like in: getColor, computeSum, registerDefaultSettings,
etc.

Some method names are reserved for WOOPER; notably no user-defined method
should have its name prefixed with wooper or with onWOOPER.

The list of the other reserved names (that shall thus not be defined by a class devel-
oper) includes:

• get_classname and get_superclasses

• executeRequest and executeRequestAs, executeConstRequest
and executeConstRequestAs

• executeOneway and executeOnewayAs, executeConstOneway and
executeConstOnewayAs

• new and other related construction operators (new_link, synchronous_new,
etc.; see below)

• delete_any_instance_referenced_in, delete_synchronously_any_instance_referenced_in,
delete_synchronously_instances

They are reserved for all arities.
The method name is always the first information given when calling it (typically in

the method call tuple).

Method Parameters All methods are free to change the state of their instance and
possibly to trigger any side-effect (ex: sending a message, writing a file, kidnapping
Santa Claus, etc.).

As detailed below, there are two kinds of member methods:

• requests methods: they shall return a result to the caller (obviously they need to
know it, i.e. the caller has to specify its PID)

• oneway methods: no specific result are expected from them (hence no caller PID
is to be specified)

Both can take any number of parameters, including none. As always, the mar-
shalling of these parameters and, if relevant, of any returned value is performed auto-
matically by Erlang.

13

Parameters are to be specified in a (possibly empty) list, as second element of the
call tuple, like in: {getWhiskersColor,[],self()}.

If only a single, non-list, parameter is needed, the list can be omitted, and the
parameter can be directly specified. So Alfred ! {setAge,31}. works just as
well as Alfred ! {setAge,[31]}..

Note
This cannot apply if the unique parameter is a list, as this would be ambiguous.
For example: Foods=[meat,soup,croquette],
MyCat ! {setFavoriteFoods,Foods} would re-
sult in a call to setFavoriteFoods/4, i.e. a call to
setFavoriteFoods(State,meat,soup,croquette), whereas the
intent of the programmer is probably to call a setFavoriteFoods/2
method like setFavoriteFoods(State,Foods) when
is_list(Foods) -> [..] instead.
The proper call would then be MyCat !
{setFavoriteFoods,[Foods]}, i.e. the parameter list should be
used, and it would then contain only one element, the food list, whose content
would therefore be doubly enclosed.
Note also that, of course, strings are lists. So Joe !
{setName,"Armstrong"}. is likely not the call you
are looking for. Most probably you should prefer: Joe !
{setName,["Armstrong"]}..

Two Kinds of Member Methods

Request Methods A request is a member method that returns a result to the
caller.

For an instance to be able to send an answer to a request triggered by a caller, of
course that instance needs to know the caller PID.

Therefore requests have to specify, as the third element of the call tuple, an addi-
tional information: the PID to which the answer should be sent, which is almost always
the caller (hence the self() in the actual calls).

So these three potential information (request name, parameters, reference of the
sender - i.e. an atom, usually a list, and a PID) are gathered in a triplet (a 3-tuple) sent
as a message: {request_name,[Arg1,Arg2,..],self()}.

If only one parameter is to be sent, and if that parameter is not a list, then this can
become {request_name,Arg,self()}.

For example:

MyCat ! {getAge,[],self()}.

or:

Douglas ! {askQuestionWithHint,[{meaning_of,"Life"},{maybe,42}],self()}.

or:

MyCalculator ! {sum,[[1,2,4]],self()}.

14

The actual result R, as determined by the method, is sent back as an Erlang mes-
sage, which is a {wooper_result,R} pair, to help the caller pattern-matching the
WOOPER messages in its mailbox.

receive should then be used by the caller to retrieve the request result, like in the
case of this example of a 2D point instance:

MyPoint ! {getCoordinates,[],self()},
receive

{wooper_result,[X,Y]} ->
[..]

end,
[..]

Oneway Methods A oneway is a member method that does not return a result to
the caller.

When calling oneway methods, the caller does not have to specify its PID, as no
result is expected to be returned back to it.

If ever the caller sends by mistake its PID nevertheless, a warning is sent back to it,
the atom wooper_method_returns_void, instead of {wooper_result,Result}.

The proper way of calling a oneway method is to send to it an Erlang message that
is:

• either a pair, i.e. a 2-element tuple (therefore with no PID specified): {oneway_name,[Arg1,Arg2,..]}
or {oneway_name,Arg} if Arg is not a list; for example: MyPoint !
{setCoordinates,[14,6]} or MyCat ! {setAge,5}

• or, if the oneway does not take any parameter, just the atom oneway_name.
For example: MyCat ! declareBirthday

No return should be expected (the called instance does not even know the PID of
the caller), so no receive should be attempted on the caller side, unless wanting to wait
until the end of time.

Due to the nature of oneways, if an error occurs instance-side during the call, the
caller will never be notified of it.

However, to help the debugging, an error message is then logged (using error_logger:error_msg)
and the actual error message, the one that would be sent back to the caller if the method
was a request, is given to erlang:exit instead.

Method Results

Execution Success: {wooper_result,ActualResult} If the execution
of a method succeeded, and if the method is a request, then {wooper_result,ActualResult}
will be sent back to the caller (precisely: to the process whose PID was specified in the
call triplet).

Otherwise one of the following error messages will be emitted7.

7Note, though, that in general terms there is little interest in pattern-matching these messages (defensive
programming is not always the best option; linking created active instances to their creator is usually a better
approach).

15

Execution Failures When the execution of a method fails, three main error re-
sults can be output (as a message for requests, as a log for oneways).

A summary could be:

Error Result Interpretation Likely guilty
wooper_method_not_found No such method exists in

the target class.
Caller

wooper_method_failed Method triggered a runtime
error (it has a bug).

Called instance

wooper_method_faulty_returnMethod does not respect
the WOOPER return con-
vention.

Called instance

Note
As mentioned above, failure detection may better be done through the use of
(Erlang) links, either explicitly set (with erlang:link/1) or, preferably
(ex: to avoid race conditions), with a linked variation of the new operator
(ex: new_link/N), as discussed later in this document. So a reader in a
hurry may want to skip these considerations and directly jump to the Method
Definition section.

wooper_method_not_found

The corresponding error message is:

{wooper_method_not_found,InstancePid,Classname,MethodName,
MethodArity,ListOfActualParameters}

The corresponding error message is:

{wooper_method_not_found,InstancePid,Classname,MethodName,
MethodArity,ListOfActualParameters}.

For example:

{wooper_method_not_found,<0.30.0>,class_Cat,layEggs,2,...}

Note that MethodArity includes the implied state parameter (that will be dis-
cussed later), i.e. here layEggs/2might be defined as layEggs(State,NumberOfNewEggs)
-> [..].

This error occurs whenever a called method could not be found in the whole inher-
itance graph of the target class. It means this method is not implemented, at least not
with the deduced arity.

More precisely, when a message {method_name,[Arg1,Arg2,..,ArgN]...}
(request or oneway) is received, method_name/N+1 has be to called: WOOPER
tries to find method_name(State,Arg1,..,ArgN), and the method name and
arity must match.

If no method could be found, the wooper_method_not_found atom is re-
turned (if the method is a request, otherwise the error is logged), and the object state
will not change, nor the instance will crash, as this error is deemed a caller-side one
(i.e. the instance has a priori nothing to do with the error).

16

wooper_method_failed

The corresponding error message is:

{wooper_method_failed,InstancePid,Classname,MethodName,
MethodArity, ListOfActualParameters,ErrorTerm}

For example:

{wooper_method_failed,<0.30.0>,class_Cat,myCrashingMethod,1,[],
{{badmatch,create_bug},[..]]}

If the exit message sent by the method specifies a PID, it is prepended to ErrorTerm.
Such a method error means that there is a runtime failure, it is generally deemed an

instance-side issue (the caller should not be responsible for it, unless it sent incorrect
parameters), thus the instance process logs that error, sends an error term to the caller
(if and only if it is a request), and then exits with the same error term.
wooper_method_faulty_return

The corresponding error message is:

{wooper_method_faulty_return,InstancePid,Classname,MethodName,
MethodArity,ListOfActualParameters,ActualReturn}‘‘.

For example:

{wooper_method_faulty_return,<0.30.0>,class_Cat,
myFaultyMethod,1,[],[{{state_holder,..]}

This error occurs only when being in debug mode.
The main reason for this to happen is when debug mode is set and when a method

implementation did not respect the expected method return convention (more on that
later).

It means that the method is not implemented correctly (it has a bug), or, possibly,
that it was not (re)compiled with the proper debug mode, i.e. the one the caller was
compiled with.

This is an instance-side failure (the caller has no responsibility for that), thus the
instance process logs that error, sends an error term to the caller (if and only if it is a
request), and then exits with the same error term.
Caller-Side Error Management

As we can see, errors can be better discriminated if needed, on the caller side.
Therefore one could make use of that information, as in:

MyPoint ! {getCoordinates,[],self()},
receive

{wooper_result,[X,Y]}->
[..];

{wooper_method_not_found,Pid,Class,Method,Arity,Params}->
[..];

{wooper_method_failed,Pid,Class,Method,Arity,Params,
ErrorTerm}->

[..];

17

% Error term can be a {Pid,Error} tuple as well, depending
% on the exit:
{wooper_method_failed,Pid,Class,Method,Arity,Params,

{Pid,Error}}->
[..];

{wooper_method_faulty_return,Pid,Class,Method,Arity,Params,
UnexpectedTerm}->

[..];
wooper_method_returns_void->

[..];
OtherError ->

% Should never happen:
[..]

end.

However defensive development is not really favoured in Erlang, one may let the
caller crash on unexpected return instead. Therefore generally one may rely simply on
matching the message sent in case of success8:

MyPoint ! {getCoordinates,[],self()},
receive

{wooper_result, [X,Y] } ->
[..]

end,
[..]

Method Definition Here we reverse the point of view: instead of calling a method,
we are in the process of implementing a callable one.

A method signature has always for first parameter the state of the instance, for ex-
ample: getAge(State) -> [..], or getCoordinate(State,Index) ->
[..].

For the sake of clarity, this variable should always be named State exactly (im-
plying it shall not be named for example MyState, or muted as _State9). This
convention is now enforced at compile-time.

A method must always return at least the newer instance state, so that WOOPER
can rely on it from now onward.

Note that when a method "returns" the state of the (active) instance, it returns it to
the (local, process-wise) private WOOPER-based main loop of that instance: in other
words, the state variable is never exported/sent as a message/visible from outside of its
process (unless of course a developer writes specific methods for that).

Encapsulation is ensured, as the instance is the only process able to access its own
state. On method termination, the instance then just loops again, on its updated state:
that new state will be the base one for the next call, and so on.

One should therefore see each WOOPER instance as primarily a process executing
a main loop that keeps the current state of that instance:

8In which case, should a failure happen, the method call will become blocking; linking or monitoring
instances can then be done.

9The only legit place for _State is when a method clause does not use at all the state variable, which,
in practice, happens only when a clause throws an exception.

18

• it is waiting idle for any incoming (WOOPER) message

• when such a message is received, based on the actual class of the instance and
on the method name specified in the call, the appropriate function defined in the
appropriate module is selected by WOOPER, taking into account the inheritance
graph (actually a direct per-class mapping, somewhat akin to the C++ virtual
table, has already been determined at start-up, for better performances)

• then this function is called with the appropriate parameters (those of the call, in
addition to the internally kept current state)

• if the method is a request, its specified result is sent back to the caller

• then the instance loops again, on the state possibly updated by this method call

Thus the caller will only receive the result of a method, if it is a request. Otherwise,
i.e. with oneways, nothing is sent back (nothing can be, anyway, short of knowing the
calling PID).

More precisely, depending on its returning a specific result, the method signature
will correspond either to the one of a request or of a oneway, and will use in its body a
corresponding method terminator (typically either, respectively, wooper:return_state_result/2
or wooper:return_state/1) to ensure that a new state and a result are returned,
or just a new state.

Note that all clauses of a given method must end directly with such a method ter-
minator; this is so not only to be clearer for the reader, but also for WOOPER itself, so
that it can determine the type of method at hand.

Finally, a recommended good practice is to add a type specification (see Dialyzer)
to each method definition, which allows to indicate even more clearly whether it is a
request or a oneway, whether it is a constmethod, etc. Comments are surely welcome
additions as well.

For Requests

Requests in general Requests will use wooper:return_state_result(NewState,Result)
to terminate their clauses: the new state will be kept by the instance, whereas the result
will be sent to the caller. Hence wooper:return_state_result/2 means that
the method returns a state and a result.

For example:

declareSettings(State,Settings) ->
NewState = register_settings(Settings,State),
wooper:return_state_result(NewState,settings_declared).

Two remarks there:

• register_settings/2 is an helper function here; the State parameter is
intentionally put in last position to help the reader distinguishing it from methods
(see Helper vs Static for more information on this topic)

• returning a constant atom (settings_declared) has actually an interest:
it allows to make that operation synchronous (i.e. the caller is to wait for that
result atom; it is only when the caller receives it that it will know for sure that
the operation was performed; otherwise a oneway shall be used)

19

http://erlang.org/doc/man/dialyzer.html

All methods are of course called with the parameters that were specified in their
call tuple.

For example, if we declare following request:

giveBirth(State,NumberOfMaleChildren,NumberOfFemaleChildren) ->
[..]

Then we may call it, in the case of a cat having 2 male kitten and 3 female ones,
with:

MyCat ! {giveBirth,[_Male=2,_Female=3],self()}.

Const Requests Some clauses of a request may return an unchanged state. It is then
a const clause, and rather than using the wooper:return_state_result/2
request terminator, it shall use the wooper:const_return_result/1 one.

A request whose clauses are all const is itself a const request.
For example, instead of:

getWhiskerColor(State) ->
wooper:return_state_result(State,?getAttr(whisker_color)).

one should prefer writing this const request as (and WOOPER will enforce it):

getWhiskerColor(State) ->
wooper:const_return_result(?getAttr(whisker_color)).

Note that State can be used as always, and that even there it is not reported as
unused (so one should not attempt to mute it, for example as _State).

Sender PID Requests can access to one more information than oneways: the PID
of the caller that sent the request. As WOOPER takes care automatically of sending
back the result to the caller, having the request know explicitly the caller is usually not
useful, thus the caller PID does not appear explicitly in request signatures, among the
actual parameters.

However WOOPER keeps track of this information, which remains available to
requests, and may be useful for some of them.

From a request body, the caller PID can indeed be retrieved by using the getSender
macro, which is automatically managed by WOOPER:

giveBirth(State,NumberOfMaleChildren,NumberOfFemaleChildren) ->
[..]
CallerPID = ?getSender(),
[..]

Thus a request has natively access to its caller PID, i.e. with no need to specify it
in the parameters as well as in the third element of the call tuple; so, instead of having
to define:

MyCat ! {giveBirth,[2,3,self()],self()}

20

one can rely on only:

MyCat ! {giveBirth,[2,3],self()}

while still letting the possibility for the called request (here giveBirth/3, for a
state and two parameters) to access the caller PID thanks to the getSender macro,
and maybe store it for a later use or do anything appropriate with it.

Note that:

• having to handle explicitly the caller PID is rather uncommon, as WOOPER
takes care automatically of the sending of the result back to the caller

• the getSender macro should only be used for requests, as of course the sender
PID has no meaning in the case of oneways; if that macro is called nevertheless
from a oneway, then it returns the atom undefined.

Request Type Specifications Using them is not mandatory, yet is very much recom-
mended, and WOOPER provides suitable constructs for that.

As mentioned, a request is to return a new state and a result. The former is always
wooper:state(), so it may be made implicit. The latter can be any type T(). So
a request may be considered as returning the WOOPER request_return(T())
type.

As for const requests, they shall be considered returning the const_request_return(T())
type.

Making the previous examples more complete:

-spec declareSettings(wooper:state(),settings()) ->
request_return(’settings_declared’).

declareSettings(State,Settings) ->
NewState = register_settings(Settings,State),
wooper:return_state_result(NewState,settings_declared).

-spec getWhiskerColor(wooper:state()) ->
const_request_return(color()).

getWhiskerColor(State) ->
wooper:const_return_result(?getAttr(whisker_color)).

(of course the developer is responsible for the definition of the settings() and
color() types here)

Note that we prefer surrounding atoms in single quotes when specified as a type.
Of course, should type specifications be used, they must be correct; WOOPER will

for example raise a compile-time error should request_return/1 be used on a
function that is not detected as a request.

For Oneways After relevant adaptations, most of the conventions for requests
apply to oneways.

21

Oneways in general Oneways will use wooper:return_state(NewState)
to terminate their clauses: the new state will be kept by the instance, and no result will
be returned to the caller (which is not even known - hence no ?getSender macro
applies to oneways either).

For example:

setAge(State,NewAge) ->
wooper:return_state(setAttribute(State,age,NewAge)).

This oneway can be called that way:

MyCat ! {setAge,4}.
% No result to expect.

Const Oneways Even if it is less frequent than for requests, oneways may also be
const, i.e. may leave the state unchanged, and consequently are only called for side-
effects; for example, rather than specifying:

displayAge(State) ->
io:format("My age is ~B~n.",[?getAttr(age)]),
wooper:return_state(State).

WOOPER will ensure that, in this case, wooper:const_return/0 is preferred
to wooper:return_state/1:

displayAge(State) ->
io:format("My age is ~B~n.",[?getAttr(age)]),
wooper:const_return().

A oneway whose clauses are all const is itself a const oneway.

Oneway Type Specifications The type specification of a oneway should rely, for
its return type, either on oneway_return() or on const_oneway_return(),
depending on its constness (no result to account for in either case).

Making the previous examples more complete:

-spec setAge(wooper:state,age()) -> oneway_return().
setAge(State,NewAge) ->

wooper:return_state(setAttribute(State,age,NewAge)).

-spec displayAge(wooper:state) -> const_oneway_return().
displayAge(State) ->

io:format("My age is ~B~n.",[?getAttr(age)]),
wooper:const_return().

Usefulness Of the Method Terminators The actual definition of the method ter-
minators (ex: wooper:return_state_result/2, wooper:return_state/1)
is actually quite straightforward.

For example wooper:return_state_result(AState,AResult)will sim-
ply translate into {AState,AResult}, and wooper:return_state(AState)
will translate into AState.

22

Their purpose is just to structure the method implementations, helping the method
developer not mixing updated states and results, and helping WOOPER in categorizing
appropriately all Erlang-level functions.

More precisely, as mentioned, all clauses of a method must directly end with a call
to its corresponding WOOPER method terminator.

For example, the following extract is correct:

% Returns the name of this instance.
-spec getName(wooper:state()) -> request_return(name()).
getName(State) ->

Name = nested_in_request(State),
wooper:const_return_result(Name).

% (helper)
nested_in_request(State) ->

?getAttr(name).

Whereas the next one is wrong, as getName/1 would be identified as a unex-
ported plain function (instead of as a const request), and the other way round for
nested_in_request/1:

% Returns the name of this instance.
-spec getName(wooper:state()) -> request_return(name()).
getName(State) ->

nested_in_request(State).

% (helper)
nested_in_request(State) ->

wooper:const_return_result(?getAttr(name)).

Defining nested_in_request/1 as shown below would not help either of
course:

% (helper)
nested_in_request(State) ->

?getAttr(name).

So, should a method be reported as unused, most probably that no method termina-
tor was used (hence it was not identified as such, and thus not auto-exported, and thus
may be reported as unused).

Self-Invocation: Calling a Method From the Instance Itself When implementing
a method of a class, one may want to call other methods of that same class (have they
been overridden or not).

For example, when developing the declareBirthday/1 oneway of class_Mammal
(which, among other things, is expected to increment the mammal age), one may want
to perform a call to its setAge/2 oneway (possibly introduced by an ancestor class
like class_Creature, or possibly overridden directly in class_Mammal) on the
current instance.

One could refer to this method respectively as a function exported by that ances-
tor (ex: called as class_Creature:setAge(...)) or that is local to the current
module (a direct setAge(...) local call designating then class_Mammal:setAge/2).

23

However, in the future, child classes of class_Mammal may be introduced (ex:
class_Cat), and they might define their own version of setAge/2.

Instead of hardcoding which version of that method shall be called (like in the
two previous cases, which establish statically the intended version to call), a devel-
oper may desire - if not expect - that, for a cat or for any specialised version thereof,
declareBirthday/1 calls automatically the "right" setAge/2 method (i.e. the
lastly overridden one in the inheritance graph). Possibly any class_Cat:setAge/2
- not the version of class_Creature or class_Mammal.

Such an inheritance-aware call could be easily triggered asynchronously: a clas-
sical message-based method call directly addressed by an instance to itself could be
used, like in self()!{setAge,10}, and (thanks to WOOPER) this would lead to
executing the "right" version of that method.

If this approach may be useful when not directly needing, from the method, the
result of the call and/or not needing to have it executed at once, in the general case one
wants to have that possibly overridden method be executed directly, synchronously, and
to obtain immediately the corresponding updated state and, if relevant, the associated
output result.

Inheritance-based Self-Invocation To perform the self-invocation of a method
whose actual implementation is automatically determined based on the inheritance of
the class at hand, one should call the WOOPER-defined executeRequest/{2,3}
or executeOneway/{2,3} functions (or any variation thereof), depending on the
type of the method to call.

These two helper functions behave quite similarly to the actual method calls that
are based on the operator !, except that no target instance has to be specified (since it
is by definition a call made by an instance to itself) and that no message exchange at
all is involved: the method look-up is just performed through the inheritance hierarchy,
the correct method is called with the specified parameters and the result is then directly
returned.

More precisely, executeRequest is executeRequest/2 or executeRequest/3,
its parameters being the current state, the name of the request method, and, if needed,
the parameters of the called request, either as a list or as a standalone one.

executeRequest returns a pair made of the new state and of the result.
For example, for a request taking more than one parameter, or one list parameter:

{NewState,Result} = executeRequest(CurrentState,myRequestName,
["hello",42])

For a request taking exactly one, non-list, parameter:

{NewState,NewCounter} = executeRequest(CurrentState,
addToCurrentCounter,78)

For a request taking no parameter:

{NewState,Sentence} = executeRequest(CurrentState,getLastSentence)

Const requests can be called10 as well, like in:

24

Color = executeConstRequest(CurrentState,getColor)

Regarding now executeOneway, it is either executeOneway/2 or executeOneway/3,
depending on whether the oneway takes parameters. If yes, they can be specified as a
list (if there are more than one) or, as always, as a standalone non-list parameter.

executeOneway returns the new state.
For example, a oneway taking more than one parameter, or one list parameter:

NewState = executeOneway(CurrentState,say,["hello", 42])

For a oneway taking exactly one (non-list) parameter:

NewState = executeOneway(CurrentState,setAge,78)

For a oneway taking no parameter:

NewState = executeOneway(CurrentState,declareBirthday)

Const oneways can also be called11 as well, like in:

executeConstOneway(CurrentState,displayAge)

Note
As discussed previously, there are caller-side errors that are not expected to
crash the instance. If such a call is performed directly from that instance (i.e.
with one of the execute* constructs), then two errors will be output: the
first, non-fatal for the instance, due to the method call, then the second, fatal
for the instance, due to the failure of the execute* call. This is the expected
behaviour, as here the instance plays both roles, the caller and the callee.

Self-Invocation of an Explicitly-Designated Method One can specify explicitly
the class (of course belonging to the inheritance graph of the class at hand) defining
the version of the method that one wants to execute, bypassing the inheritance-aware
overriding system.

For example, a method needing to call setAge/2 from its body would be expected
to use something like: AgeState = executeOneway(State,setAge,NewAge).

If class_Cat overrode setAge/2, any cat instance would then call the overrid-
den class_Cat:setAge/2method instead of the original class_Creature:setAge/2.

What if our specific method of class_Cat wanted, for any reason, to call the
class_Creature version of setAge/2, now shadowed by an overridden version
of it? In this case a execute*As function should be used.

These functions, which are executeRequestAs/{3,4} and executeOnewayAs/{3,4},
behave exactly as the previous execute* functions, except that they take an addi-
tional parameter (to be specified just after the state) that is the name of the mother class
(direct or not) having defined the version of the method that we want to execute.

10Note that currently WOOPER will not check that a called request is indeed const, and will silently drop
any updated state.

11Note that currently WOOPER will not check that a called oneway is indeed const, and will silently drop
any updated state.

25

Note
This mother class does not have to have specifically defined or overridden that
method: this method will just be called in the context of that class, as if it was
an instance of the mother class rather than one of the actual child class.

In our example, we should thus use simply:

AgeState = executeOnewayAs(State,class_Creature,setAge,NewAge)

in order to call the class_Creature version of the setAge/2 oneway.
Finally, as one could expect, these functions have their const counterparts, namely:

executeConstRequestAs/{3,4} and executeConstOnewayAs/{3,4}, whose
usage offers no surprise, like in:

Color = executeConstRequestAs(MyState,class_Vehicle,
getColorOf,[wheels])

Static Methods Static methods, as opposed to member methods, do not target specif-
ically an instance, they are defined at the class level.

They thus do not operate on a specified process or PID, they are just to be called
thanks to their module name, exactly as any exported standard function.

In order to further separate them from member methods, we recommend that the
names of static methods obey the snake_case convention (as opposed to CamelCase
one): a static method may for example be named get_default_settings (rather
than getDefaultSettings).

Being class-level, their actual definition does not involve any specific instance state,
and so only a result is to be returned thanks to their method terminator, which is
wooper:return_static/1.

The same applies to their result type in terms of type specification, which is to be
expressed using static_return(T()).

Here are a few examples of rather straightforward static methods, with or without
type specifications:

get_default_whisker_color() ->
wooper:return_static(black).

-spec determine_croquette_appeal(cat_name()) ->
static_return(’strong’|’moderate’|’weak’).

determine_croquette_appeal(_CatName="Tortilla") ->
wooper:return_static(strong);

determine_croquette_appeal(_CatName="Abysse") ->
wooper:return_static(moderate).

An example of use:

PossibleColor = class_Cat:get_default_whisker_color(),
[..]

26

See also the section about Methods Not Returning Anything of Interest, which may
apply to static methods notably.

Finally, having static methods leaves little interest to defining and exporting one’s
standard, plain (helper) functions; when doing so, one should wonder whether a static
method could not be a solution at least as good.

So the main purpose left to helpers is to factor out common, framework-internal
code (not targeted at users) across methods (and possibly classes), especially when it
involves an instance state (ex: display_foo(Color,Index,State) ->...).

27

State Management

Principles We are discussing here about how an instance is to manage its inner state.
Its state is only directly accessible from inside the instance, i.e. from the body of

its methods, whether they are inherited or not: the state of an instance is private (local
to its process), and the outside can only access it through the methods defined by its
class.

The state of an instance (corresponding to the one that is given by WOOPER as
first parameter of all its methods, thanks to a variable conventionally named State)
is simply defined as a set of attributes.

Each attribute is designated by a name, defined as an atom (we recommend using
camel_case for them), and is associated to a mutable value, which can be any Erlang
term.

The current state of an instance can be thought as a list of {attribute_name,attribute_value}
pairs, like in:

[{color,black}, {fur_color,sand}, {age,13}, {name,"Tortilla"}].

State Implementation Details

Instance Attributes Declaring them
Class-specific attributes may be declared, with some qualifiers.
Attribute declarations are fully optional12, yet specifying them is nevertheless rec-

ommended, at the first place for the developer and for any upcoming maintainer. As
a result, by default WOOPER will issue a warning should no attribute declaration be
found.

To do so, the class_attributes define must be set (prior to including the
WOOPER header) to a list of attribute declarations, like in:

-define(class_attributes,[
ATTR_DECL1,
ATTR_DECL2,
[...]
ATTR_DECLN]).

[...]
-include("wooper.hrl").
[...]

These declarations are to relate only to the class-specific attributes, i.e. the ones
specifically introduced by the class at hand, regardless of the ones inherited from the
mother classes.

The most general form of an attribute declaration includes the following four
information:

{Name,Type,QualifierInfo,Description}

where:

12Current versions of WOOPER do not specifically use these information, but future versions may.

28

• Name is the name of that attribute, as an atom (ex: fur_color)

• Type corresponds to the type specification of that attribute (ex: [atom()],
foo:color_index()); note that the Erlang parser will not sup-
port the | (i.e. union) operator, like in ’foo’|integer(); we
recommend to use the union variadic pseudo-function instead (with
any arity greater or equal to 2), like in: union(’foo’,integer())

• QualifierInfo is detailed just below

• Description is a plain string describing the purpose of this at-
tribute; this is a comment aimed only at humans, which preferably
does not start with a capital letter and does not end with a dot (ex:
"describes the color of the fur of this animal
(not including whiskers)" or a shorter, maybe better, "color
of the fur of this animal (not including whiskers)")

A qualifier information is either a single qualifier, or a list of qualifiers.
A qualifier can be:

• a scope qualifier: public, protected or private; in future versions, a
public attribute will correspond to the union of settable and gettable
and will result in accessor methods being automatically generated; for example,
should the fur_color attribute be declared public, then:

– the getFurColor/1 const request would be added (with its spec):

getFurColor(State) ->
wooper:const_return_result(?getAttr(fur_color)).

– the setFurColor/2 oneway would be added (with its spec):

setFurColor(State,FurColor) ->
wooper:return_state(setAttribute(State,fur_color,

FurColor)).

• an initialisation qualifier: {initial,18} would denote that the initial value
of the corresponding attribute is 18 (this value would then be set even before
entering any constructor)

• a mutability qualifier: {const,24} would denote that the corresponding at-
tribute is const and that its (fixed) value is 24 (thus const implies here
initial, which should not specified in that case); const can also be specified
just by itself (with no initial value), so that it can be initialised later, in construc-
tors, and, of course, just once (this is useful for non-immediate, yet const, values)

• the none qualifier: none implies that no specific qualifier is specified, and as a
result the defaults apply; this qualifier can only be used by itself (not in a list), as
an alternative to specifying an empty qualifier list

The defaults are:

• protected

• mutable (i.e. non-const)

• no specific initial value enforced (not even undefined)

29

http://erlang.org/doc/reference_manual/typespec.html

So an example of attribute declaration could be:

{age,integer(),{initial,18},
"stores the current age of this creature"}

Note
Currently, these information are only of use for the developer (i.e. for docu-
mentation purpose). No check is made about whether they are used, whether
no other attributes are used, whether the type is meaningful and indeed en-
forced, the default initial value is not set, etc. Some of these information
might be handled by future WOOPER versions.

Shorter attribute declarations can also used, then with less than the 4 aforemen-
tioned pieces of information mentioned:

• only 3 of them: {Name,Type,Description} (implying: qualifier is none)

• only 2 of them: {Name,Description} (implying: type is any(), qualifier
is none)

• only 1 of them: Name (implying: type is any(), qualifier is none, no descrip-
tion)

(and, of course, any number of attributes may not be specified at all)
Finally, a full example of the declaration of class attributes can be:

-define(class_attributes,[
name,
{age,integer(),{initial,18},

"stores the current age of this creature"},
birth_date,
{weight,"total weight measured"}]).

Storing them
The attributes of a class instance can be seen as a series of key/value pairs stored in

an associative table, whose type has been chosen for its look-up/update efficiency and
scalability.

This is a dynamic datastructure, allowing attributes to be added, removed or modi-
fied at any time (the safer conventions that apply will be discussed later).

This table, among other elements, is itself stored in the overall instance state, i.e. in
the variable designated by State specified at the beginning of each member method
(and constructors, and destructor), on which the process corresponding to active in-
stances is looping, and whose type is wooper:state().

We strongly advise to suffix the name of the various state variables used with
State (ex: RegisteredState, FinalState, etc.).

30

Managing the State of an Instance A set of WOOPER-provided functions allows
to operate on these state variables, notably to read and write the attributes that they
contain.

As seen in the various examples, method implementations will access (read/write)
attributes stored in the instance state, whose original version (i.e. the state of the in-
stance at the method beginning) is always specified as their first parameter, convention-
ally named State.

This current state can be then modified in the method, and a final state (usually an
updated version of the initial one) will be returned locally to WOOPER, thanks to a
method terminator.

Then the code (automatically instantiated by the WOOPER header in the class
implementation) will loop again for this instance with this updated state, waiting for the
next method call, which will possibly change again the state (and trigger side-effects),
and so on.

One may refer to wooper.hrl for the actual definition of most of these WOOPER
constructs.

Modifying State The setAttribute/3 function
Setting an attribute (creating13 and/or modifying it) should be done with the setAttribute/3

function:

NewState = setAttribute(AState,AttributeName,NewAttributeValue)

For example, AgeState = setAttribute(State,age,3) will return a
new state, bound to AgeState, exact copy of State (notably with all the attribute
pairs equal) but for the age attribute, whose value will be set to 3.

Therefore, during the execution of a method, any number of states can be defined
(ex: State, InitialisedState, AgeState, etc.) before all, but the one that is
returned, are garbage-collected.

Note that the corresponding state duplication remains efficient both in terms of
processing and memory, as the different underlying state structures (ex: State and
AgeState) actually share all their terms except the one modified - thanks to the
immutability of Erlang variables that allows to reference rather than copy, be these
datastructures tables, records, or anything else.

In various cases, notably in constructors, one needs to define a series of attributes in
a row, but chaining setAttribute/3 calls with intermediate states that have each
to be named is not really convenient.

A better solution is to use the setAttributes/2 function (note the plural) to
set a list of attribute name/attribute value pairs in a row.

For example:

ConstructedState = setAttributes(MyState,
[{age,3},{whisker_color,white}])

will return a new state, exact copy of MyState but for the listed attributes, set to
their respective specified value.
The swapInAttribute/3 function

13Attribute creation should (by convention) only be done in constructors (not in methods).

31

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl

This function allows to swap, in the specified state, the current value of the specified
attribute with the specified value; for example:

{NewState,PastColor} = swapInAttribute(AState,fur_color,_NewValue=black)

The removeAttribute/2 function

Note
The removeAttribute/2 function is now deprecated and should not be
used anymore.

This function was used in order to fully remove an attribute entry (i.e. the whole
key/value pair).

This function is deprecated now, as we prefer defining all attributes once for all, at
construction time, and never adding or removing them dynamically: the good practice
is just to operate on their value, which can by example be set to undefined, without
having to deal with the fact that, depending on the context, a given attribute may or
may not be defined (kids: don’t do that).

For example NewState = removeAttribute(State,an_attribute)
could be used, for a resulting state having no key corresponding to an_attribute.

Neither the setAttribute* variants nor removeAttribute/2 can fail, re-
gardless of the attribute being already existing or not.

Reading State The hasAttribute/2 function

Note
The hasAttribute/2 function is now deprecated and should not be used
anymore, as no attribute is expected to be removed anymore either.

To test whether an attribute is defined, one could use the hasAttribute/2 func-
tion: hasAttribute(AState,AttributeName), which returns either true or
false, and cannot fail.

For example, true = hasAttribute(State,whisker_color) matches
if and only if the attribute whisker_color is defined in state State.

Note that generally, as already mentioned, it is a bad practice to define attributes
outside of the constructor of an instance, as the availability of an attribute could then
depend on the actual state, which is an eventuality generally difficult to manage reli-
ably.

A better approach is instead to define all possible attributes directly from the con-
structor. They would then be assigned to their initial value and, if none is appropriate,
they should be set to the atom undefined (instead of not being defined at all).
The getAttribute/2 function

Getting the value of an attribute is to be done with the getAttribute/2 func-
tion:

AttributeValue = getAttribute(AState,AttributeName)

32

For example, MyColor = getAttribute(State,whisker_color) re-
turns the value of the attribute whisker_color from state State.

The requested attribute may not exist in the specified state. In this case, a runtime
error is issued.

Requesting a non-existing attribute triggers a bad match. In the previous example,
should the attribute whisker_color not have been defined, getAttribute/2
would return:

{key_not_found,whisker_color}

The getAttr/2 macro
Quite often, when having to retrieve the value of an attribute from a state variable,

that variable will be named State, notably when using directly the original state
specified in the method declaration.

Indeed, when a method needs a specific value, generally either this value was al-
ready available in the state it began with (then we can read it from State), or is
computed in the course of the method, in which case that value is most often already
bound to a variable, which can then be re-used directly rather than be fetched from a
state.

In this case, the getAttr/2macro can be used: ?getAttr(whisker_color)
expands (literally) as getAttribute(State,whisker_color), and is a tad
shorter.

This is implemented as a macro so that the user remains aware that an implicit
variable named State is then used.

The less usual cases where a value must be read from a state variable that is not the
initial State one occur mostly when wanting to read a value from the updated state
returned by a execute* function call. In this case the getAttribute/2 function
should be used.

Read-Modify-Write Operations Some additional helper functions are provided
for the most common operations, to keep the syntax as lightweight as possible.
The addToAttribute/3 function

When having a numerical attribute, addToAttribute/3 adds the specified num-
ber to the attribute.

To be used like in:

NewState = addToAttribute(State,AttributeName,Value)

For example:

MyState = addToAttribute(FirstState,a_numerical_attribute,6)

In MyState, the value of attribute a_numerical_attribute is increased of
6, compared to the one in FirstState.

Calling addToAttribute/3 on a non-existing attribute will trigger a runtime
error ({key_not_found,AttributeName}).

If the attribute exists, but no addition can be performed on it (i.e. if it is meaningless
for the type of the current value), a badarith runtime error will be issued.

33

The subtractFromAttribute/3 function
When having a numerical attribute, subtractFromAttribute/3 subtracts

the specified number from the attribute.
To be used like in:

NewState = subtractFromAttribute(State,AttributeName,Value)

For example:

MyState = subtractFromAttribute(FirstState,a_numerical_attribute,7)

In MyState, the value of attribute a_numerical_attribute is decreased of
7, compared to the one in FirstState.

Calling subtractFromAttribute/3 on a non-existing attribute will trigger a
runtime error ({key_not_found,AttributeName}). If the attribute exists, but
no subtraction can be performed on it (meaningless for the type of the current value), a
badarith runtime error will be issued.
The toggleAttribute/2 function

Flips the value of the specified (supposedly boolean) attribute: when having a
boolean attribute, whose value is either true or false, sets the opposite logical
value to the current one.

To be used like in:

NewState = toggleAttribute(State,BooleanAttributeName)

For example:

NewState = toggleAttribute(State,a_boolean_attribute)

Calling toggleAttribute/2 on a non-existing attribute will trigger a runtime
error ({key_not_found,AttributeName}). If the attribute exists, but has not a
boolean value, a badarith runtime error will be issued.
The appendToAttribute/3 function

The corresponding signature is:

NewState = appendToAttribute(State,AttributeName,Element)

When having a list attribute, appends specified element to the attribute list, in first
position.

For example, if a_list_attributewas already set to [see_you,goodbye]
in State, then after NewState = appendToAttribute(State,a_list_attribute,hello),
the a_list_attribute attribute defined in NewStatewill be equal to [hello,see_you,goodbye].

Calling appendToAttribute/3 on a non-existing attribute will trigger a a
badmatch runtime error. If the attribute exists, but is not a list, an ill-formed list
will be created (ex: [8|false] when appending 8 to false, which is not a list).
The deleteFromAttribute/3 function

The corresponding signature is:

34

NewState = deleteFromAttribute(State,AttributeName,
Element)

When having a list attribute, deletes first match of specified element from the at-
tribute list.

For example: NewState = deleteFromAttribute(State,a_list_attribute,hello),
with the value corresponding to the a_list_attribute attribute in State vari-
able being [goodbye,hello,cheers,hello,see_you] should return a state
whose a_list_attribute attribute would be equal to [goodbye,cheers,hello,see_you],
all other attributes being unchanged.

If no element in the list matches the specified one, no error will be triggered and
the list will be kept as is.

Calling deleteFromAttribute/3 on a non-existing attribute will trigger a
badmatch runtime error. If the attribute exists, but is not a list, a function_clause
runtime error will be issued.
The popFromAttribute/2 function

The corresponding signature is {NewState,Head} = popFromAttribute(State,AttributeName):
when having an attribute of type list, this function removes the head from the list and
returns a pair made of the updated state (same state except that the corresponding list
attribute has lost its head, it is equal to the list tail now) and of that head.

For example: {NewState,Head} = popFromAttribute(State,a_list_attribute).
If the value of the attribute a_list_attribute was [5,8,3], its new value (in
NewState) will be [8,3] and Head will be bound to 5.
The addKeyValueToAttribute/4 function

The corresponding signature is NewState = addKeyValueToAttribute(State,AttributeName,Key,Value):
when having an attribute whose value is a table (a Myriad table:table() pseudo-
type), adds specified key/value pair to that table attribute.

For example: TableState = setAttribute(State,my_table,table:new()),
NewState = addKeyValueToAttribute(TableState,my_table,my_key,my_value)
will result in having the attribute my_table in state variable TableState being a
table with only one entry, whose key is my_key and whose value is my_value.

35

Multiple Inheritance & Polymorphism

The General Case Both multiple inheritance and polymorphism are automatically
managed by WOOPER: even if our cat class does not define a getAge/1 request, it
can nevertheless readily be called on a cat instance, as it is inherited from its mother
classes (here from class_Creature, an indirect mother class).

Therefore all creature instances can be handled the same, regardless of their actual
classes:

% Inherited methods work exactly the same as methods defined
% directly in the class:
MyCat ! {getAge,[],self()},
receive

{wooper_result,Age} ->
io:format("This is a ~B year old cat.", [Age])

end,

% Polymorphism is immediate:
% (class_Platypus inheriting too from class_Mammal,
% hence from class_Creature).
MyPetList = [MyCat,MyPlatypus],
[begin

PetPid ! {getAge,[],self()},
receive

{wooper_result,Age} ->
io:format("This is a ~B year old creature.",[Age])

end
end || PetPid <- MyPetList].

Running this code should output something like:

This is a 4 year old cat.
This is a 4 year old creature.
This is a 9 year old creature.

The point here is that the implementer does not have to know what are the actual
classes of the instances that are interacted with, provided that they share a common
ancestor; polymorphism allows to handle them transparently.

The Special Case of Diamond-Shaped Inheritance In the case of a diamond-shaped
inheritance, as the method table is constructed in the order specified in the declaration
of the superclasses, like in:

-define(superclasses,[class_X,class_Y,...]).

and as child classes override mother ones, when an incoming WOOPER message
arrives the selected method should be the one defined in the last inheritance branch of
the last child (if any), otherwise the one defined in the next to last branch of the last
child, etc.

36

http://en.wikipedia.org/wiki/Diamond_problem
http://en.wikipedia.org/wiki/Diamond_problem

Generally speaking, overriding in that case the relevant methods that were initially
defined in the child class at the base of the diamond, in order that they perform explic-
itly a direct call to the wanted module, is by far the most reasonable solution, in terms
of clarity and maintainability, compared to trying to guess which version of the method
in the inheritance graph should be called.

Regarding the instance state, the attributes are set by the constructors, and the
developer can select in which order the direct mother classes should be constructed.

However, in such a diamond-shaped inheritance scheme, the constructor of the
class that sits at the top of a given diamond will be called more than once.

Any side-effect that it would induce would then occur as many times as this class
is a common ancestor of the actual class; it may be advisable to create idempotent
constructors in that case.

Note
More generally speaking, diamond-shaped inheritance is seldom necessary.
More often than not, it is the consequence of a less-than-ideal OOP design,
and should be avoided anyway.

37

Life-Cycle

Basically, creation and destruction of instances are managed respectively thanks to
the new/new_link and the delete operators (all these operators are WOOPER-
reserved function names, for all arities, and are automatically generated), like in:

MyCat = class_Cat:new(Age,Gender,FurColor,WhiskerColor),
MyCat ! delete.

Instance Creation: new/new_link and construct

Role of a new /construct Pair Whereas the purpose of the new / new_link
operators is to create a working (active) instance on the user’s behalf, the role of
construct is to initialise an instance of that class (regardless of how it was cre-
ated, i.e. of which new variation was triggered), while being able to be chained for
inheritance, as explained later.

Such an initialisation is of course part of the instance creation: all calls to any
of the new operators result in an underlying call to the corresponding constructor
(construct operator).

For example, both creations stemming from MyCat = class_Cat:new(A,B,C,D)
and MyCat = class_Cat:new_link(A,B,C,D)will rely on class_Cat:construct/5
to set up a proper initial state for the MyCat instance.

The same class_Cat:construct(State,A,B,C,D) will be called for all
creation cases (one may note that, because of its first parameter, which accounts for the
WOOPER-provided initial State parameter, the arity of construct is equal to the
one of new / new_link plus one).

The new_link operator behaves exactly as the new operator, except that it creates
an instance that is Erlang-linked with the process that called that operator, exactly like
spawn_link behaves compared to spawn14.

The new and new_link operators are automatically defined by WOOPER (thanks
to a relevant parse transform), but they rely on their corresponding, class-specific, user-
defined construct operator (only WOOPER is expected to make use of it). More
precisely, for each of the construct/N+1 operator defined by the class developer,
WOOPER creates a full set of corresponding new variations, including new/N and
new_link/N.

At least one construct operator must be defined by the class developer (oth-
erwise WOOPER will raise a compile-time error), knowing that any number of them
can then be defined, each with its own arity (ex: construct/1, construct/2,
construct/3, etc.), and each with possibly multiple clauses that will be, as usual,
selected at runtime based on pattern-matching.

construct operators may not be exported explicitly by the class developer, as
WOOPER will automatically take care of that if necessary.

For example:

% If having defined class_Dog:construct/{1,3}:
MyFirstDog = class_Dog:new(),
MySecondDog = class_Dog:new(_Weight=4.4,_Colors=[sand,white]).

14For example it induces no race condition between linking and termination in the case of a very short-
lived spawned process.

38

The Various Ways of Creating an Instance As shown with the new_link
operator, even for a given set of construction parameters, many variations of new can
be of use: linked or not, synchronous or not, with a time-out or not, on current node or
on a user-specified one, etc.

For a class whose instances can be constructed from N actual parameters (hence
having a construct/N+1 defined), the following new operator variations, detailed
in the next section, are built-in:

• if an active instance is to be created on the local node:

– non-blocking creation: new/N and new_link/N

– blocking creation: synchronous_new/N and synchronous_new_link/N

– blocking creation with time-out: synchronous_timed_new/N and
synchronous_timed_new_link/N

• if an active instance is to be created on any specified remote node:

– non-blocking creation: remote_new/N+1 and remote_new_link/N+1

– blocking creation: remote_synchronous_new/N+1 and remote_synchronous_new_link/N+1

– blocking creation with time-out: remote_synchronous_timed_new/N+1
and remote_synchronous_timed_new_link/N+1

• if a passive instance is to be created by the current process: new_passive/N

Note
All remote_* variations require one additional parameter (that shall be spec-
ified first), since the remote node on which the instance should be created has
of course to be specified.

All supported new variations are detailed below.
Asynchronous new

This corresponds to the plain new, new_link operators discussed earlier, relying
internally on the usual spawn* primitives . These basic operators are asynchronous
(non-blocking): they trigger the creation of a new instance, and return immediately,
without waiting for it to complete and succeed, and the execution of the calling process
continues while (hopefully, i.e. with no guarantee - the corresponding process may
immediately crash) the instance is being created and executed.
Synchronous new

As mentioned, with the previous asynchronous forms, the caller has no way of
knowing when the spawned instance is up and running (if it ever happens), unless
triggering a later request on it.

Thus two counterpart operators, synchronous_new/synchronous_new_link
are also automatically generated.

They behave like new/new_link except that they will return only when (and if)
the created instance is up and running: they are blocking, synchronous, operators.

For example, once (if) MyMammal = class_Mammal:synchronous_new(...)
returns, one knows that the MyMammal instance is fully created and waiting for incom-
ing messages.

39

The implementation of these synchronous operations relies on a message (pre-
cisely: {spawn_successful,InstancePid}) being automatically sent by the
created instance to the WOOPER code on the caller side, so that the synchronous_new
operator will return to the user code only once successfully constructed and ready to
handle messages.
Timed Synchronous new

Note that, should the instance creation fail, the caller of a synchronous new would
then be blocked for ever, as the awaited message would actually never be sent by the
failed new instance. In some cases a time-out may be useful, so that the caller may be
unblocked and may react appropriately.

This is why the synchronous_timed_new* operators have been introduced:
if the caller-side time-out15 expires while waiting for the created instance to answer,
then they will throw an appropriate exception:

• either {synchronous_time_out,Classname} if it was a node-local cre-
ation (where Classname is the name of the class corresponding to the instance
to create; ex: class_Cat)

• or {remote_synchronous_time_out,Node,Classname}, where Node
is the name of the node (as an atom) on which the instance was to be created

Then the caller may or may not catch this exception.
Remote new

Exactly like a process might be spawned on another Erlang node, a WOOPER
(active) instance can be created on any user-specified available Erlang node.

To do so, the remote_*new* variations shall be used. They behave exactly like
their local counterparts, except that they take an additional information, as first param-
eter: the node on which the specified instance must be created.

For example:

MyCat = class_Cat:remote_new(TargetNode, Age, Gender,
FurColor, WhiskerColor).

Of course:

• the remote node must be already existing

• the current node must be able to connect to it (shared cookie)

• all modules that the instance will make use of must be available on the remote
node, including the ones of all relevant classes (i.e. the class of the instance but
also its whole class hierarchy)

All variations of the new operator are always defined automatically by WOOPER:
nothing special is to be done for them, provided of course that a corresponding con-
structor has been defined indeed.

15Depending on whether or not the class to instantiate was compiled in debug mode, the time-out is to
last by default for, respectively, 5 seconds (shorter, to ease debugging) or for 30 minutes (longer, to favor
robustness).

40

Some Examples of Instance Creation Knowing that a cat can be created here
out of four parameters (Age, Gender, FurColor, WhiskerColor), various cat
(active) instances could be created thanks to:

% Local asynchronous creation:
MyFirstCat = class_Cat:new(_Age=1,male,brown,white),

% The same, but a crash of this cat will crash the current
% process too:
MySecondCat = class_Cat:new_link(2,female,black,white),

% This cat will be created on OtherNode, and the call will
% return only once it is up and running or once the creation
% failed. As moreover the cat instance is linked to the
% instance process, it may crash this calling process
% (unless it traps EXIT signals):
MyThirdCat = class_Cat:remote_synchronous_timed_new_link(

OtherNode,3,male,grey,black),
[...]

Definition of the construct Operator Each class must define at least one
construct operator, whose role is to fully initialise, based on the specified construc-
tion parameters, the state of new instances in compliance with the class inheritance -
regardless of the new variation being used.

The type specification of a constructor relying on N construction parameters (hence
construct/N+1) is:

-spec construct(wooper:state(),P1,P2,..,PN) -> wooper:state().

In the context of class inheritance, the construct operators are expected to be
chained: they must be designed to be called by the ones of their child classes, and in
turn they must call themselves the constructors of their direct mother classes, if any
(should there be multiple direct mother classes, usually their constructors are to be
called in the same order as their declaration order in the superclasses define).

Hence they always take the current state of the instance being created as a starting
base, and returns it once updated, first from the direct mother classes, then by this class
itself.

For example, let’s suppose class_Cat inherits directly both from class_Mammal
and from class_ViviparousBeing, has only one attribute (whisker_color)
of its own, and that a new cat is to be created out of four pieces of information:

-define(superclasses,[class_Mammal,class_ViviparousBeing]).

-define(class_attributes,[whisker_color]).

% Constructs a new Cat.
construct(State,Age,Gender,FurColor,WhiskerColor) ->

% First the (chained) direct mother classes:
MammalState = class_Mammal:construct(State,Age,Gender,

41

FurColor),
ViviparousMammalState =

class_ViviparousBeing:construct(MammalState),
% Then the class-specific attributes:
setAttribute(ViviparousMammalState,whisker_color,

WhiskerColor).

The fact that the Mammal class itself inherits from the Creature class does not
have to appear here: it is to be managed directly by class_Mammal:construct/4
(at any given inheritance level, only direct mother classes must be taken into account).

One should ensure that, in constructors, the successive states are always built from
the last updated one, unlike this case (where no mother class has been declared):

% WRONG, the age update is lost:
construct(State,Age,Gender) ->

AgeState = setAttribute(State,age,Age),
% AgeState should be used here, not State:
setAttribute(State,gender,Gender),

This would be correct:

% RIGHT but a bit clumsy:
construct(State,Age,Gender) ->

AgeState = setAttribute(State,age,Age),
setAttribute(AgeState,gender,Gender).

Recommended form:

% BEST:
construct(State,Age,Gender) ->

setAttributes(State,[{age,Age},{gender,Gender}]).

The WOOPER defaults would imply that, in the first case, at compilation time the
AgeState variable would be reported as unused, and this warning would be consid-
ered as a fatal error.

Note
There is no strict relationship between construction parameters and instance
attributes, neither in terms of cardinality, type nor value.
For example, attributes could be set to default values, a point could be created
from an angle and a distance but its actual state may consist on two cartesian
coordinates instead, etc.
Therefore both have to be defined by the class developer, and, in the general
case, attributes cannot be inferred from construction parameters.

Finally, a class can define multiple clauses for any of its constructors: the proper
one will be called based on the pattern-matching performed on these parameters.

Instance Deletion

42

Automatic Chaining Of Destructors We saw that, when implementing a con-
structor (construct/N), like in all other OOP approaches the constructors of the
direct mother classes have to be explicitly called, so that they can be given the proper
parameters, as determined by the class developer.

Conversely, with WOOPER, when defining a destructor for a class (destruct/1),
one only has to specify what are the specific operations and state changes (if any) that
are required so that an instance of that class is deleted: the proper calling of the destruc-
tors of mother classes across the inheritance graph is automatically taken in charge by
WOOPER.

Once the user-specified actions have been processed by the destructor (ex: releasing
a resource, unsubscribing from a registry, deleting other instances, closing properly a
file, etc.), it is expected to return an updated state, which will be given in turn to the
destructors of the instance direct mother classes.

WOOPER will automatically make use of any user-defined destructor, otherwise
the default one will be used, doing nothing (i.e. returning the exact same state that it
was given).

Note also that, as always, there is a single destructor associated to a given class.
As constructors, destructors should not be exported, as WOOPER is to automati-

cally take care of that.

Asynchronous Destruction: using destruct/1 The type specification of a
destructor (destruct/1) is:

-spec destruct(wooper:state()) -> wooper:state().

More precisely, either the class implementer does not define at all a destruct/1
operator (and therefore uses the default do-nothing destructor), or it defines it explicitly,
like in:

destruct(State) ->
io:format("An instance of class ~w is being deleted now!",[?MODULE]),
% Quite often the destructor does not need to modify the state of
% the instance:
State.

In both cases (default or user-defined destructor), when the instance will be deleted
(ex: MyInstance ! delete is issued), WOOPER will take care of:

• calling any user-defined destructor for that class

• then calling the ones of the direct mother classes, which will in turn call the ones
of their mother classes, and so on

Note that the destructors for direct mother classes will be called in the reverse
order of the one according to the constructors ought to have been called: if a class
class_X declares class_A and class_B as mother classes (in that order), then in
the class_X:construct definition the implementer is expected to call class_A:construct
and then class_B:construct, whereas on deletion the WOOPER-enforced order
of execution will be: class_X:destruct/1, then class_B:destruct/1, then
class_A:destruct/1, for the sake of symmetry.

43

Synchronous Destruction: using synchronous_delete/1 WOOPER au-
tomatically defines as well a way of deleting synchronously a given instance: a caller
can request a synchronous (blocking) deletion of that instance so that, once notified of
the deletion, it knows for sure the instance does not exist anymore, like in:

InstanceToDelete ! {synchronous_delete,self()},
% Then the caller can block as long as the deletion did not occur:
receive

{deleted,InstanceToDelete} ->
doSomething()

end.

The class implementer does not have to do anything to support this feature, as the
synchronous deletion is automatically built by WOOPER on top of the usual asyn-
chronous one (both thus rely on destruct/1).

For a more concise way of doing the same, see also:

• wooper:delete_synchronously_instance/1 (for a single instance)

• wooper:delete_synchronously_instances/1 (for multiple ones)

44

Passive Instances

A passive instance is an instance of a WOOPER class that is not powered by a dedi-
cated (Erlang) process: it is just a mere (opaque) term, a pure data-structure that holds
the state16 of that instance, and that is returned to the process having created that in-
stance (which can then do whatever it wants with it - most probably store it as a "super
attribute").

As a consequence, such a passive instance will not be able to perform any spon-
taneous behaviour on its own, or to have its member methods triggered by other pro-
cesses. However most operations that can be done on "standard" (active) WOOPER
instances can also be done on passive ones: like their active counterparts, they are
constructed thanks to, well, one of the constructors defined by their class, they are de-
structed thanks to, well, their destructor, and in-between they will retain their inner
state and be able to execute any request or oneway triggered by the process holding
that term (and of course any underlying multiple inheritance will be respected).

Triggering a method onto a passive instance will result in a relevant function to be
evaluated, not involving any message.

To create a passive instance, the new_passive operator shall be used, like in:

MyPassiveCat = class_Cat:new_passive(_Age=2, female, _Fur=brown, _Whiskers=white)

Then methods can be triggered on it, like in:

{WhiskerCat,white} = wooper:execute_request(MyPassiveCat, getWhiskerColor),
OlderCat = wooper:execute_oneway(WhiskerCat, declareBirthday),
RedCat = wooper:execute_oneway(OlderCat, setFurColor, red),
[...]

Note that, in addition to execute_request/{2,3}, execute_const_request/{2,3}
are available; the latter return only the request result, as the state of the passive instance
shall be constant (this is checked in debug mode).

Symmetrically, in addition to execute_oneway/{2,3}, execute_const_oneway/{2,3}
are available even though their use is less common.

Until, finally:

wooper:delete_passive(RedCat).

Types may be defined in order to clarify the fact that a term corresponds to a
(WOOPER) passive instance.

For example, for any kind of instance owning a passive calendar instance (created
with, say, class_Calendar:new_passive/2), one could define and use, as at-
tribute type17:

-type calendar_passive() :: wooper:passive_instance().

See the passive_instance_test module for more details about passive in-
stances.

16This term is mostly the same state term as the one on which the process dedicated to an active instance
is looping. So one could even imagine a WOOPER instance going back and forth between an active and a
passive mode of operation, if it was useful.

17A type preferably defined that way and exported in class_Calendar.

45

Miscellaneous Technical Points
Helper vs Static

In the context of a class, one may wonder what is the difference between an exported
helper function and a static method?

In terms of actual runtime evaluation, none.
In terms of source code, there is little difference: the former just has to use the

wooper:return_static/1 to terminate its clauses and, should it use a type spec,
this one should specify a return type based on return_static/1.

In terms of semantics, there are more differences: a static method is meant to stand
by itself, whether or not an instance of that class exists, and to provide higher-level
services.

On the contrary, an exported helper function is just a convenience for code-reuse,
a means of sharing code between classes. Typically it centralises code of use by mul-
tiple methods, which often results in such an helper to have as a parameter a State
variable (preferably listed last among its parameters, for clarity/uniformity) - whereas
this cannot happen with static methods.

Calling a Method Clause from Another

Sometimes, defining a clause based on the result of another one (of the same function)
proves convenient. With methods, there are different ways to do so, some better than
others.

For example, let’s suppose we defined this (non-const) request:

-spec getPriceFor(wooper:state(),string()) ->
request_return(price()).

getPriceFor(State,ArticleStringDescription) ->
{Price,NewState} = [...some code...]
wooper:return_state_result(NewState,Price).

Now, we would like to support article descriptions being also possibly binary strings,
without having to bother introducing a new price-establishing intermediary function
(such as the foo/2 one, below) that would be common to the two corresponding
clauses, like in:

getPriceFor(State,ArticleStringDescription) ->
when is_list(ArticleStringDescription) ->

{Price,NewState} = foo(ArticleStringDescription,State),
wooper:return_state_result(NewState,Price);

getPriceFor(State,ArticleBinDescription)
when is_binary(ArticleBinDescription) ->

{Price,NewState} = foo(binary_to_list(ArticleBinDescription),
State),

wooper:return_state_result(NewState,Price).

% Too cumbersome to define an extra function such as:
foo(ArticleStringDescription,State)->

[...some code...]

46

So our first impulse would be to write instead something like:

% (same clause)
getPriceFor(State,ArticleStringDescription) ->

when is_list(ArticleStringDescription) ->
{Price,NewState} = [...some code...]
wooper:return_state_result(NewState,Price);

% Added clause:
getPriceFor(State,ArticleBinDescription) ->

when is_binary(ArticleBinDescription) ->
getPriceFor(State,

binary_to_list(ArticleBinDescription)).

However this would not be correct, as the second clause lacks a terminator, and
WOOPER does not accept that (it might be the sign that the developer believes he is
writing an helper function).

So we would like to use wooper:return_state_result/2 for the second
clause as well, however we shall then have a state and a price to feed this termi-
nator. How can we obtain them from the presumably opaque term returned by the
wooper:return_state_result/2 call of the first clause?

The answer is quite simple: all WOOPER method terminators being actually no-op,
they are replaced at compilation-time by the actual terms they were given.

So a terminator taking only a state as parameter is replaced literally by this state (ex:
wooper:return_state(FooState) is actually FooState), while one taking
two returns a pair (ex: wooper:return_state_result(FooState,Res) is
actually {FooState,Res}). No black magic here!

Therefore the implementation we target could be best18 written as:

% (same clause)
getPriceFor(State,ArticleStringDescription) ->

when is_list(ArticleStringDescription) ->
{Price,NewState} = [...some code...]
wooper:return_state_result(NewState,Price);

% Added clause:
getPriceFor(State,ArticleBinDescription)

when is_binary(ArticleBinDescription) ->
{NewState,Price} = getPriceFor(State,

binary_to_list(ArticleBinDescription)),
wooper:return_state_result(NewState,Price).

Integrated Call APIs

Single Calls Calls made to passive instances require the use of a dedicated API that
is provided by the wooper module, namely:

18wooper:executeRequest/3 could be used instead of matching the result of
wooper:return_state_result/2 and breaking its opaqueness - but (even it is a matter of
taste here) we prefer the more direct and efficient approach that was presented. Note though that in general
they do not bear the same semantics: wooper:executeRequest/3 calls a possibly overridden version
of the specified method, whereas a direct call targets specifically the class-local version of that method.

47

• for requests: execute_request/{2,3} and execute_const_request/{2,3}

• for oneways: execute_oneway/{2,3} and execute_const_oneway/{2,3}

As for active instances, doing the same directly through Erlang base constructs
(message sending and receiving) is so easy that generally no specific API is involved -
even though it exists (notably to allow for a few usage variations):

• for requests: execute_request/{2,3,4}

• for oneways: execute_oneway/{2,3}

(with active instances, constness does not need to be taken at this level)

Multi-Calls Sometimes, in the context of active instances, it may be more convenient
to reason not in terms of single calls, but of multiple calls, with various flavours in the
number of callers, callees, method calls involved, parallelism and synchronisation.

So the wooper module provides facilities in order to execute:

• a given request sequentially on multiple callees: send_request_in_turn/3
or, if wanting that a time-out applies, send_request_in_turn/4

• the same for a oneway sending (off-band, through a direct message sending) a
user-specified acknowledgement term (ex: a conventional atom): send_acknowledged_oneway_in_turn/5

• a given request, whose only result in a user-specified acknowledgement term,
in parallel on multiple callees: send_requests_and_wait_acks/4 or,
if wanting that a time-out applies, send_requests_and_wait_acks/5

• a given request in parallel on multiple callees, obtaining back an unordered
list of their results: obtain_results_for_requests/3

• a series of requests on a single callee: send_request_series/2 (just
for the sending) and obtain_results_for_request_series/2 (to in-
clude also the collecting of their ordered results)

Many more flavours can be considered (ex: for active/passive instances, requests or
oneways, with or without time-out, synchronisable or not, etc.) and may be supported
in the future, on a per-need basis.

However it may be more convenient to compose any extra multi-call that is needed
thanks to the various basic helpers that are provided in the wooper module in order
to send calls or to collect their results. Doing so allows for example to perform inter-
leaving (triggering concurrent calls as soon as possible, collecting their results as late
as possible) and maximise the overall parallelism.

Methods Not Returning Anything of Interest

Not all functions or static methods (or even requests) are pure, and sometimes only the
side-effects of their execution are of interest, in which case nothing relevant may have
to be returned19.

19So, why one use a request instead of a oneway then? One reason is synchronisation, so that
the caller code can block until the request has completed. Nevertheless for that use case we rec-
ommend that such a request returns a conventional, self-describing, preferably unique atom, such as
foobar_server_stopped. We will focus here mostly on the static methods that would have no mean-
ingful value to return.

48

For such needs, our Myriad base layer introduced the opaque pseudo-builtin type
void() (nothing fancy), which is to be used by WOOPER methods as well.

Should one need a value of the void/0 type, we recommend using the void
atom.

As a result (pun!), one may define:

-spec stop() -> static_return(void()).
stop() ->

[...] % Do some side-effects
wooper:return_static(void).

Introducing specific method terminators to convey that meaning would have been
possible, yet multiplying the syntactical constructs would probably hurt the terseness
of the underlying language.

However, as, fairly frequently, static methods have nothing meaningful to return,
the wooper:return_static_void/0method terminator and its spec-level coun-
terpart static_void_return() type have been introduced20.

Exception-Throwing Methods

A clause of a method may simply always throw an exception, and WOOPER will
manage it automatically if possible.

More precisely, such a clause is considered licit yet not giving information about
the method type. So, should there be other, non-throwing clauses, WOOPER will still
be able to identify the nature of the method.

Otherwise (all clauses always throw), the class developer will have to give a hint
about the actual nature of that function - thanks to a type specification.

For example, if defining the API of an abstract class (say, an AbstractShape
class) whereas, for a given method signature (ex: getArea/1), there is no meaningful
default implementation, one may for example write:

getArea(_State) ->
% For an abstract shape, no possible definition;
% so catching any child class not overriding it,
% thanks to:
%
throw(not_overridden).

However, from the point of view of WOOPER, getArea/1, short of using any
method terminator, can be of any nature (for example a method or an helper function).
WOOPER will then request the developer to clarify this ambiguity by adding a type
spec, such as:

-spec getArea(wooper:state()) -> const_request_return(area()).

This will be sufficient for WOOPER.
In other related cases, it may be convenient instead to centralise the management

of a range of failures in specific helper functions that always throw (such a function
never returns), like in:

20This method terminator is replaced at compilation-time by a no-op, thus the static method returns ac-
tually the previous expression - unless there is none, in which case the wooper_void_return atom is
returned (the caller is not expected to match a void result anyway).

49

http://myriad.esperide.org

manage_foobar_failure(X,Y) ->
[...]
throw({foobar_failed,{X,Y}}).

Writing a method relying on such an helper function could be:

doSomething(State,A) ->

case foobar(A,State) of

{value,Result} ->
wooper:const_return_result(Result);

{error,Error} ->
manage_foobar_failure(A,Error)

end.

The problem is that this call to manage_foobar_failure/2 does not include
a method terminator, and thus this branch would be, from the WOOPER point of view,
the one of an helper function, thus clashing with the other branches (here telling it is a
const request).

A solution could be to write instead:

[...]
{error,Error} ->

Dummy = manage_foobar_failure(A,Error),
wooper:const_return_result(Dummy)

but that resulting code would not be that satisfactory (a bit ugly, not so readable).
So, instead, WOOPER introduced the throwing/1 method terminator, allowing

the following, clearer, more elegant, code:

[...]
{error,Error} ->

wooper:throwing(manage_foobar_failure(A,Error))

delete_any_instance_referenced_in/2

When an attribute contains either a single instance reference (i.e. the PID of the corre-
sponding process) or a list of instance references, this WOOPER-defined helper func-
tion will automatically delete (asynchronously) these instances, and will return an up-
dated state in which this attribute is set to undefined.

This function is especially useful in destructors.
For example, if State contains:

• an attribute named my_pid whose value is the PID of an instance

• and also an attribute named my_pids containing a list of PID instances

and if the instance at hand that shall be deleted took ownership of these instances,
then:

50

delete(State) ->
TempState = wooper:delete_any_instance_referenced_in(State,my_pid),
wooper:delete_any_instance_referenced_in(TempState,my_pids).

will automatically delete all these instances (if any) and return an updated state.
Then the destructors of the mother classes can be chained by WOOPER.
See also the various other helpers defined in wooper.erl.

EXIT Signals / Messages

A class instance may (if trapping EXIT signals) receive EXIT messages from other
processes.

A given class can process these EXIT notifications:

• either by defining and exporting the onWOOPERExitReceived/3 oneway

• or by inheriting it

For example:

-spec onWOOPERExitReceived(wooper:state(),basic_utils:pid_or_port(),
basic_utils:exit_reason()) -> const_oneway_return().

onWOOPERExitReceived(State,PidOrPort,ExitReason) ->
io:format("MyClass EXIT handler ignored signal ’~p’ "

"from ~w.~n", [ExitReason,PidOrPort]),
wooper:const_return().

may result in an output like:

MyClass EXIT handler ignored signal ’normal’ from <0.40.0>.

If no class-level onWOOPERExitReceived/3 oneway is available, the default
WOOPER EXIT handler (namely wooper:default_exit_handler/3) will be
used (it just performs console-based notification).

It will just notify the signal to the user, by displaying a message like:

WOOPER default EXIT handler for instance <0.36.0> of class class_Cat
ignored signal ’normal’ from <0.40.0>.

DOWN Messages for Process Monitors

A class instance may receive DOWN messages from other (monitored) processes.
A given class can process these DOWN notifications:

• either by defining and exporting the onWOOPERDownNotified/5 oneway

• or by inheriting it

If no class-level onWOOPERDownNotified/5 oneway is available, the default
WOOPER DOWN handler (namely wooper:default_down_handler/5) will
be used (it just performs console-based notification).

Note that DOWN messages shall not be mixed up with the nodedown messages of
the next section.

51

Node Monitors

Quite similarly to EXIT messages, node monitors and nodeup / nodedown mes-
sages are also managed by WOOPER, see the onWOOPERNodeConnection/3 and
onWOOPERNodeDisconnection/3 oneways.

Should these oneways be not available for the class at hand, the default WOOPER
node handlers (namely wooper:default_node_up_handler/3 and default_node_down_handler/3
respectively) will be used (they just perform console-based notifications).

Note that nodedown messages shall not be mixed up with the DOWN messages of
the previous section.

A bit of Introspection

Here are the class-level information that can be fetched from the name of a class (as a
result they are static methods):

• get_superclasses/0 will return the (ordered) list of the declared direct
mother classes of this class

• get_class_specific_attributes/0 will return the (in-order) list of
declared class-specific attribute metadata, as a list of wooper_info:attribute_info/0
records, containing, for a given attribute: its name, type, qualifiers and textual
description

For example:

class_Platypus:get_superclasses().
[class_Mammal,class_OvoviviparousBeing]

Developer Guidelines

General Guidelines All WOOPER classes must include wooper.hrl:

-include("wooper.hrl").

Note
This include should come, in the source file of a class, after all WOOPER-
related defines (such as superclasses, class_attributes, etc.).

To help declaring the right defines in the right order, using the WOOPER template
is recommended.

One may also have a look at the full test examples, as a source of inspiration.
For examples of re-use of WOOPER by upper layers, one may refer to Ceylan-

Traces, to US-Web or to the Sim-Diasca simulation engine.

OTP Guidelines For server-like activities, it may be useful to have an instance of a
WOOPER class (ex: class_Foobar) behave like an OTP worker in a supervision
tree.

A supervisor bridge (i.e. a process in charge of integrating properly such a non-OTP
process into an OTP supervision tree) is the tool of choice here.

Rather than declaring the corresponding behaviour and its implemented API di-
rectly in the target class (ex: in class_Foobar), we recommend for clarity and sepa-
ration of concerns to introduce a specific module for that, like done with traces_bridge_sup
for class_TraceAggregator.erl or us_common_config_bridge_sup for class_USConfigServer.erl.

52

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_WOOPERTemplate.erl.sample
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples
http://traces.esperide.org
http://traces.esperide.org
http://us-web.esperide.org
http://sim-diasca.com
https://erlang.org/doc/man/supervisor_bridge.html
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/traces_bridge_sup.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/class_TraceAggregator.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/us_common_config_bridge_sup.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USConfigServer.erl

Class Developer Cheat Sheet

When specifying a class: -module(class_Foobar).
Any description thereof: -define(class_description,"Class for...").
When specifying its superclasses: -define(superclasses,[A,B]).
When specifying its class attributes: -define(class_attributes,[ATTR1,ATTR2,...])
A given ATTRn may be one of:

• {Name,Type,QualifierInfo,Description}

• {Name,Type,Description}

• {Name,Description}

• Name

QualifierInfo can be, for example, public, or [private,const].
All member methods have State for initial parameter, and are expected to return

at least a (possibly const) state.
When defining a request:

• its spec should rely, for its return type, either on request_return(T()) or
on const_request_return(T())

• each of its clause should terminate with either wooper:return_state_result(S,R)
or wooper:const_return_result(R)

When defining a oneway:

• its spec should rely, for its return type, either on oneway_return() or on
const_oneway_return()

• each of its clause should terminate with either wooper:return_state(S)
or wooper:const_return()

When defining a static method:

• its spec should rely, for its return type, either on static_return(T()) or
on static_void_return()

• each of its clause should terminate with wooper:return_static(R) or
with wooper:return_static_void()

Finding it difficult not to mix the keywords for spec return types (ex: request_return/1)
and method terminators (ex: wooper:return_state_result/2)?

A mnemonic could be that a spec return type designates a returned term (hence
for example a request_return/1 - more generally such types always end with
_return) whereas a method terminator designates an action (returning a state and a
result, hence to wooper:return_state_result/2 for example).

Source Editors

We use Emacs but of course any editor will be fine.
For Nedit users, a WOOPER-aware nedit.rc configuration file for syntax highlight-

ing (on black backgrounds), inspired from Daniel Solaz’s Erlang Nedit mode, is avail-
able.

53

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/nedit.rc
http://www.trapexit.org/forum/viewtopic.php?p=30189

Similarity With other Languages

WOOPER is in some ways adding features quite similar to the ones available with other
languages, including Python (simple multiple inheritance, implied self/State pa-
rameter, attribute dictionaries/associative tables, etc.) while still offering the major
strengths of Erlang (concurrency, distribution, functional paradigm) and not hurting
too much the overall performances (mainly thanks to the prebuilt attribute and method
tables).

WOOPER limitations

Actually no significant implementation shortcoming has been identified.
The main limitations that existed beforehand were (from the most recently allevi-

ated to the earlier ones):

• the per-instance memory footprint has been reduced by sharing the "virtual table"
of a given class between all its instances, thanks to persistent_term

• the efficiency of the per-instance associative table to store the attribute values has
been improved by switching from our hashtable implementation to a map-based
one

• the macro-based constructor declarations were too cumbersome and limiting (ex:
a single constructor per class was supported); this is fully addressed thanks to the
WOOPER parse transform now

We expect the upcoming JIT compilation to benefit a lot to WOOPER, with no
change having to be operated at its level.

As always, there is certainly room for improvement, to grind a bit more runtime
performances and/or to further reduce the per-instance memory footprint. Profiling
actions welcome!

54

WOOPER Example
We defined a small set of classes in order to serve as an example and demonstrate
multiple inheritance:

Class implementations

• class_Creature.erl

• class_ViviparousBeing.erl

• class_OvoviviparousBeing.erl

• class_Mammal.erl

• class_Reptile.erl

• class_Cat.erl

• class_Platypus.erl

Tests

Here are a few examples of tests:

• class_Creature_test.erl

• class_ViviparousBeing_test.erl

• class_OvoviviparousBeing_test.erl

• class_Mammal_test.erl

• class_Reptile_test.erl

• class_Cat_test.erl

55

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Creature.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_ViviparousBeing.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_OvoviviparousBeing.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Mammal.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Reptile.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Cat.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Platypus.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Creature_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_ViviparousBeing_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_OvoviviparousBeing_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Mammal_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Reptile_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Cat_test.erl

• class_Platypus_test.erl

To run a test (ex: class_Cat_test.erl), when WOOPER has already been
compiled, one just has to enter, from the corresponding directory: make class_Cat_run.

56

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Platypus_test.erl

Good Practices
When using WOOPER, the following conventions are deemed useful to respect (even
if they are not mandatory).

No warning should be tolerated in code using WOOPER, as we never found use-
less notifications.

All attributes of an instance should better be defined from the constructor, in-
stead of being dynamically added during the life of the instance; otherwise the methods
would have to deal with some attributes that may, or may not, be defined; if no proper
value exists for an attribute at the creation of an instance, then its value should just be
set to the atom undefined; its type should then go from T() to maybe(T()).

Class-specific attributes should be specified (using the class_attributes
define), as doing so brings up much useful information to the developer/maintainer.

Type specifications should be used for at least most non-internal functions (such
as constructors, methods, etc.).

There are always welcome, and in some corner cases they are also needed by
WOOPER in order to discriminate between equally possible cases (see Exception-
Throwing Methods for more information).

The naming conventions (ex: CamelCase / snake_case) shall be respected;
notably, helper functions and static methods (which, from an Erlang point of view, are
mostly just exported functions) should be named like C functions, in snake_case
(ex: compute_sum) rather than being written in CamelCase (ex: no helper function
should be named computeSum), to avoid mixing up these different kinds of code.

To further separate helper functions from instance methods, an helper function tak-
ing a State parameter should better place it at the end of its parameter list rather than
in first position (ex: compute_sum(X,Y,State) rather than compute_sum(State,X,Y)).

In a method body, the various state variables being introduced should be prop-
erly named, i.e. their name should start with a self-documenting prefix followed by the
State suffix, like in: SeededState=setAttribute(State,seed,{1,7,11}).

Some more general (mostly unrelated) Erlang-level conventions that we like:

• when, in code, more than one parameter is specified in a function signature,
parameter names can be surrounded by spaces (ex: f(Color), or g(Age,
Height))

• functions should be separated by (at least) three newlines, whereas clauses for a
given function should be separated by one or two newlines, depending on their
size

• to auto-document parameters, a "mute" variable is preferably to be used: for ex-
ample, instead of f(Color, true) use f(Color, _Dither=true
); however note that (unfortunately) these mute variables are still bound and thus
pattern-matched: for example, if multiple _Dither mute variables are bound
in the same scope to different values, a bad match will be triggered at runtime.

57

Troubleshooting
Debug Mode

We recommend that, as a WOOPER user, one enables its debug mode when devel-
oping (ensure in GNUmakevars.inc that ENABLE_DEBUG has been set to true -
which is the case by default), as it may catch various user errors more easily (not only
WOOPER-internal errors, but also, and most importantly, any user-originating mis-
take).

Then only, once one’s code is mature enough, this debug mode may be disabled in
order to obtain best performances.

"No attribute declaration found" whereas a class_attributes define exists

Most probably that your -define(class_attributes,[...]). define hap-
pens after the WOOPER header include.

The correct order is:

-define(class_attributes,[
ATTR_DECL1,
ATTR_DECL2,
[...]
ATTR_DECLN]).

[...]
-include("wooper.hrl").
[...]

Compilation Error Pointing to wooper_for_classes.hrl

As the comment in wooper_get_class_attributes/0 (in said header file)
hints, the class_attributes define in the class at hand is most probably incorrect
(syntax error).

The compilation error message should help; if it is syntax error before:
’|’, a union type for an attribute must have been defined with |, instead of with the
union variadic pseudo-operator. See the section about attribute declaration for more
details.

General Case

Compilation Warnings A basic rule of thumb in all languages is to enable all warn-
ings and eradicate them before even trying to test a program.

This is still more valid when using WOOPER, whose proper use should never result
in any warning being issued by the compiler.

Notably warnings about unused variables are precious in order to catch mistakes
when state variables are not being properly taken care of (ex: when a state is defined
but never re-used later).

Runtime Errors Most errors while using WOOPER should result in relatively clear
messages (ex: wooper_method_failed or wooper_method_faulty_return),
associated with all relevant runtime information that was available to WOOPER, in-
cluding context and stacktrace.

58

Another way of overcoming WOOPER issues is to activate the debug mode for all
WOOPER-enabled compiled modules (ex: uncomment -define(wooper_debug_mode,).
in wooper.hrl or, preferably, ensure in GNUmakevars.inc that ENABLE_DEBUG
has been set to true), and recompile your classes.

The debug mode tries to perform extensive checking on all WOOPER entry points,
from incoming messages to the user class itself, catching mistakes from the class de-
veloper as well as from the class user.

For example, the validity of states returned by a constructor, by each method and by
the destructor is checked, as the one of states specified to the execute* constructs.

If it is not enough to clear things up, an additional step can be to add, on a per-class
basis (ex: in class_Cat.erl), before the WOOPER include, -define(wooper_log_wanted,)..

Then all incoming method calls will be traced, for easier debugging. It is seldom
necessary to go till this level of detail.

As there are a few common WOOPER gotchas though, the main ones are listed
below.

Mismatches In Method Call Oneway Versus Request Calls
One of these gotchas - experienced even by the WOOPER author - is to define

a two-parameter oneway, whose second parameter is a PID, and to call this method
wrongly as a request, instead of as a oneway.

For example, let’s suppose the class_Dog class defines the oneway method
startBarkingAt/3 as:

startBarkingAt(State,Duration,ListenerPID) -> ...

The correct approach to call this oneway would be:

MyDogPid ! {startBarkingAt,[MyDuration,self()]}

An absent-minded developer could have written instead:

MyDogPid ! {startBarkingAt,MyDuration,self()}

This would have called a request method startBarkingAt/2 (which could
have been for example startBarkingAt(State,TerminationOffset) ->
..., the PID being interpreted by WOOPER as the request sender PID), a method that
most probably does not even exist.

This would result in a bit obscure error message like:

Error in process <0.43.0> on node ’XXXX’ with exit value:
{badarg,[{class_Dog,wooper_main_loop,1}]}.

List Parameter Incorrectly Specified In Call
As explained in the Method Parameters section, if a method takes only one param-

eter and if this parameter is a list, then in a call this parameter cannot be specified as a
standalone one: a parameter list with only one element, this parameter, should be used
instead.

59

Error With Exit Value: {undef,[{map_hashtable,new,[..]}.. You
most probably forgot to build the myriad directory that contains, among other mod-
ules, the map_hashtable.erl source file.

Check that you have a map_hashtable.beam file indeed, and that it can be
found from the paths specified to the virtual machine.

Note that the WOOPER code designates this module as the table one (ex: table:new()),
for a better substituability (this is obtained thanks to a parse-transform provided by
Ceylan-Myriad) .

60

Current Stable Version & Download
Prerequisites

This OOP layer, Ceylan-WOOPER, relies (only) on:

• Erlang

• the Ceylan-Myriad base layer

We prefer using GNU/Linux, sticking to the latest stable release of Erlang, and
building it from sources, thanks to GNU make.

Refer to the corresponding Myriad prerequisite section for more precise guidelines,
knowing that Ceylan-WOOPER does not need modules with conditional support such
as crypto or wx.

Using Cutting-Edge GIT

This is the installation method that we use and recommend; the WOOPER master
branch is meant to stick to the latest stable version: we try to ensure that this main
line always stays functional (sorry for the pun). Evolutions are to take place in feature
branches and to be merged only when ready.

As a result, once a proper Erlang version is available, the Ceylan-Myriad repos-
itory should be cloned and built, before doing the same with the Ceylan-WOOPER
repository, like in:

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Myriad myriad
$ cd myriad && make all && cd ..
$ git clone https://github.com/Olivier-Boudeville/Ceylan-WOOPER wooper
$ cd wooper && make all

Using OTP-Related Build/Runtime Conventions

Note
Over the years, we slowly migrated from our custom, make-based build to
integrate more closely to the OTP ecosystem (using applications, releases;
then rebar3, hex). Only mixed results were obtained (operations were slower,
more complex, more fragile, and not always suitable for "complex" builds
involving parse transforms). So, at least for the moment, we prefer mostly
relying on our custom build system (still supporting OTP conventions) and
experience no drawback.

As discussed for Myriad, we added the (optional) possibility of generating a WOOPER
OTP application out of the build tree (obtained thanks to the method described in the
previous section), ready to be integrated into an (OTP) release. For that we rely on
rebar3, relx and hex.

OTP conventions mandate using:

-include_lib("wooper/include/wooper.hrl").

rather than:

61

http://www.erlang.org/
http://myriad.esperide.org
http://myriad.esperide.org#prerequisites
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
http://myriad.esperide.org/myriad.html#otp
https://www.rebar3.org/
https://github.com/erlware/relx
https://hex.pm/

-include("wooper.hrl").

Unlike Myriad, which is an OTP library application, WOOPER is an OTP ac-
tive application, meaning the reliance on an application that can be started/stopped
(wooper_app), a root supervisor (wooper_sup) and a class manager that is a back-
ground server process (gen_server) in a supervision tree.

Note
By the way, why are the WOOPER instances not more tightly integrated within
the OTP framework? The most natural match would be to have them im-
plement as well the gen_server behaviour - yet this would involve non-
negligible overhead in terms of additional messages exchanges and function
calls, and the API would not as pleasant as the current form (requests would
have to be aggregated in handle_call/3, oneways in handle_cast/2,
etc.).

Using Rebar3

Note
In a nutshell: the usual rebar3 machinery is in place and functional, so the only
WOOPER prerequisite (Myriad) and WOOPER itself can be obtained simply
thanks to:

$ git clone https://github.com/Olivier-Boudeville/Ceylan-WOOPER.git wooper
$ cd wooper
$ rebar3 compile

Then WOOPER and its tests shall be ready for a successful execution.
Note that rebar3 is an alternate way of building WOOPER, as one may rely
directly on our make-based system instead.

The same procedures as explained for Myriad apply, once rebar3 is available:

$ make rebar3-application
$ make rebar3-release

More precisely, to test the WOOPER OTP application support, provided that make
rebar3-compilewas issued beforehand, one can run from the root of the WOOPER
source tree:

$ cd test
$ make wooper_otp_application_run

Running unitary test wooper_otp_application_run (third form)
from wooper_otp_application_test

--> Testing module wooper_otp_application_test.

Starting the WOOPER application.
[debug] Starting WOOPER application (type: normal, start arguments: []).

62

https://myriad.esperide.org
http://myriad.esperide.org/myriad.html#otp

[debug] Starting the WOOPER root supervisor.
[debug] Initializing the WOOPER root supervisor (args: []).
[debug] Starting and linking the WOOPER class manager.
[debug] WOOPER class manager created, as <0.87.0>.
WOOPER version: {2,0,5}.
Class filename corresponding to ’class_Tiger’: ’class_Tiger.erl’.
Stopping the WOOPER application.
[debug] Stopping WOOPER application (state: []).
Successful end of test of the WOOPER application.
=INFO REPORT==== 19-Jul-2019::22:53:28.243821 ===

application: wooper
exited: stopped
type: temporary

=INFO REPORT==== 19-Jul-2019::22:53:28.260437 ===
application: myriad
exited: stopped
type: temporary

--> Successful end of test.

(test finished, interpreter halted)

One may run make create-wooper-checkout in order to create, based on
our conventions, a suitable _checkouts directory so that rebar3 can directly take into
account local, directly available (in-development) dependencies (here, only Myriad).

Using Hex

Hex packages for WOOPER used to be published for most versions, yet finally our
workflow does not rely on Hex, so we do not update the Hex packages anymore. Just
drop us an email if needing a recent one.

For more details, one may have a look at:

• rebar.config.template, the general rebar configuration file used when generating
the WOOPER OTP application and release (implying the automatic management
of Myriad)

• rebar-for-hex.config.template, to generate a corresponding Hex package for WOOPER
(whose structure and conventions is quite different from the previous OTP ele-
ments)

• rebar-for-testing.config.template, the simplest test of the previous Hex package:
an empty rebar project having for sole dependency that Hex package

Testing WOOPER

Once Myriad and WOOPER itself have been built (for that refer to either Using Cutting-
Edge GIT or Using Rebar3), just run from the root directory of WOOPER:

$ make test

63

https://hex.pm/packages/wooper
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/conf/rebar.config.template
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/conf/rebar-for-hex.config.template
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/conf/rebar-for-testing.config.template
https://myriad.esperide.org

The testing shall complete successfully (if it is not the case, see our support sec-
tion).

Note
WOOPER is built and tested at each commit through continuous integration,
and the same holds for its only prerequisite (Myriad). Reciprocally this pro-
cedure applies to the projects based on it, directly (ex: Traces) or not (ex:
US-Web), so in terms of usability, confidence should be high.

64

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/actions?query=workflow%3A%22Erlang+CI%22
https://myriad.esperide.org
https://traces.esperide.org/
https://us-web.esperide.org/

Version History & Changes
Version 2.0 [current stable]

Released officially on Sunday, February 3, 2019.
It has been a large rewriting of this layer, with much improvements notably:

• multiple different-arity constructors per class are supported now

• no more wooper_construct_parameters, longer wooper_construct_export
or wooper_construct_export defines

• automatic detection and export of constructors, any destructor and methods

• WOOPER method terminators introduced (ex: wooper:return_state_result/2,
instead of the ?wooper_return_state_result macro)

• the class_attributes optional parse attribute define introduced (-define(class_attributes,[...]).

• execute*With renamed as execute*As (clearer)

• convenience method wrappers such as wooper:execute_request/3 have
their parameters reordered (target - either a PID or a passive instance - comes
first now)

• passive instances supported (still a bit experimental, not used a lot, yet working)

More generally, many macros and definitions in the WOOPER header files moved
to code generated thanks to a parse-transform.

Although this version does not share any code with the various experiments and
candidate 2.0 versions that had been previously developed (thanks at least to Ulf and
Nicolas in 2010, and to Enrique and Roland in 2013, both operating at that time on the
so-called Zero-Overhead WOOPER version), these preliminary works surely helped
defining the API that we deem suitable now, and that we implemented in the current
version.

Version 1.x

Since 2016 we switched back to a "rolling version", not really defining specific release
milestones.

Many minor improvements integrated, API enriched in a backward compatible
manner.

These versions have been pretty stable very soon, and did the job for nearly a decade
(2008-2018), during which various attempts of radical improvements were performed.

Version 1.0

Countless improvements have been integrated in the course of the use of WOOPER,
which has been now been stable for years.

The main change since the 0.4 version is the use of the newly-introduced map Er-
lang datatype, resulting in the hashtablemodule being replaced by the map_hashtable.
They obey to the same API and the table pseudo-type abstracts out the actual choice
in that matter (it is transparently parse-transformed into the currently-retained datatype).

65

Version 0.4

It is mainly a BFO (Bug Fixes Only) version, as functional coverage is pretty complete
already.

Main changes are:

• debug mode enhanced a lot: many checkings are made at all fronteers between
WOOPER and either the user code (messages) or the class code (constructors,
methods, destructor, execute requests); user-friendly explicit error messages are
displayed instead of raw errors in most cases; is_record used to better detect
when an expected state is not properly returned

• wooper_result not appended any more to method returns in debug mode

• release mode tested and fixed

• exit replaced by throw, use of newer and better try/catch instead of mere
catch

• destructor chained calls properly fixed this time

• delete_any_instance_referenced_in/2 added, wooper:return_state_*
macros simplified, remote_* bug fixed

Version 0.3

Released on Wednesday, March 25, 2009.
Main changes are:

• destructors are automatically chained as appropriate, and they can be overridden
at will

• incoming EXIT messages are caught by a default WOOPER handler which can
be overridden on a per-class basis by the user-specified onWOOPERExitReceived/3
method

• direct method invocation supported, thanks to the executeRequest and executeOneway
constructs, and wooper_result no more appended to the result tuple

• synchronous spawn operations added or improved: synchronous_new/synchronous_new_link
and al; corresponding template updated

• state management enriched: popFromAttribute added

• all new variations on remote nodes improved or added

• major update of the documentation

Version 0.2

Released on Friday, December 21, 2007. Still fully functional!
Main changes are:

• the sender PID is made available to requests in the instance state variable (see
request_sender member, used automatically by the getSender macro)

66

• runtime errors better identified and notified

• macros for attribute management added, existing ones more robust and faster

• fixed a potential race condition when two callers request nearly at the same time
the WOOPER class manager (previous mechanism worked, class manager was
a singleton indeed, but second caller was not notified)

• improved build (Emakefile generated), comments, error output

• test template added

• documentation updated

Version 0.1

Released on Sunday, July 22, 2007. Already fully functional!

67

WOOPER Inner Workings
General Principles

Understanding Compilation WOOPER is the second level of a software stack be-
ginning with Erlang and then Myriad.

If the initial versions of WOOPER were mostly based on macros and headers,
newer ones rely on the Erlang way of doing metaprogramming, namely parse-transforms.

More precisely, the sources of a user-defined class are transformed by the standard
Erlang toolchain (erlc compiler) into an AST (Abstract Syntax Tree), which is first
transformed by WOOPER (ex: to generate the new operators, to export any destructor,
etc.) and then by Myriad (ex: to support newer types such as void/0, maybe/1 or
table/2), which also provides much of the AST transformation support.

Understanding the Mode of Operation of a WOOPER Instance Each instance
runs a main loop (wooper_main_loop/1, defined in wooper.hrl) that keeps its in-
ternal state and, through a blocking receive, serves the methods as specified by
incoming messages, quite similarly to a classical server that loops on an updated state,
like in:

my_server(State) ->
receive

{command,{M,P}} ->
NewState = execute_command(State,M,P),
my_server(NewState)

end.

In each instance, WOOPER manages the tail-recursive infinite surrounding loop,
State corresponding to the (private) state of the instance, and execute_command(State,M,P)
corresponding to the WOOPER logic that triggers the user-defined method M with the
current state (State) and the specified parameters (P), and that may return a result.

The per-instance kept state is twofold, in the sense that it contains two associative
tables, one to route method calls and one to store the instance attributes, as explained
below.

Method Virtual Table

General Principle This associative table allows, for a given class, to determine which
module implements actually each supported method.

For example, all instances of class_Cat have to know that their getWhiskerColor/1
method is defined directly in that class, as opposed to their setAge/2 method whose
actual implementation is to be found, say, in class_Mammal, should this class have
overridden it from class_Creature.

As performing a method look-up through the entire inheritance graph at each call
would waste resources, the look-up is precomputed for each class.

Indeed a per-class table is built at runtime, on the first creation of an instance of
this class, and stored by the unique (singleton) WOOPER class manager that shares it
to all the class instances.

This manager is itself spawned the first time it is needed, and stays ready for all
instances of various classes being created (it uses a table to associate to each class its
specific virtual table).

68

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl

This per-class method table has for keys the known method names (atoms) for this
class, associated to the values being the most specialised module, in the inheritance
graph, that defines that method.

Hence each instance has a reference to a shared table that allows for a direct method
look-up.

As the table is built only once and is theoritically shared by all instances of that
class21, it adds very little overhead, space-wise and time-wise. Thanks to the table,
method look-up is expected to be quite efficient too (constant-time).

Taking class_Platypus.erl as a (small) example (shallow inheritance tree, and just a
few attributes), by uncommenting traces in the class manager, we can see that the size
of the class_Platypus virtual table is 1040 bytes.

At runtime, after its full construction, the total size of a Platypus instance (i.e. the
overall size of its corresponding process) is 8712 bytes.

Knowing that (with OTP 23, AMD64 on GNU/Linux) the size of a blank process
is 2688 bytes22, the actual payload specific to this instance is 8712-2688=6024
bytes (and the virtual table accounts for roughly 17% of it).

After having used the persistent_term module (see our persistent_term branch)
to share these (immutable) per-class virtual tables, the size of the same test Platy-
pus instance became 6840 bytes, corresponding thus to a per-instance shrinking of
8712-6840=1872 bytes here.

When the class manager registers (once for all) the class_Platypus virtual table, the
size of the persistent_term registry grows of 1072 bytes (which is consistent with a
virtual table of 1040 bytes).

Attribute Table

This is another associative table, this time necessarily per-instance.
Keys are attribute names of that instance, values are the corresponding attribute

values.
It allows a simple, seamless yet efficient access to all data members, including

inherited ones.

21Provided that Erlang does not copy these shared immutable structures, which unfortunately does not
seem to be currently the case with the vanilla virtual machine. In a later version of WOOPER, the per-class
table will be precompiled and shared as a module, thus fully removing that per-instance overhead.

22Measured with P=spawn(basic_utils, freeze, []), then
basic_utils:get_process_size(P).

69

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Platypus.erl
https://erlang.org/doc/man/persistent_term.html

Issues & Planned Enhancements
• test the impact of using HiPE by default / wait for the upcoming JIT compilation

• integrate automatic persistent storage of instance states, for example in Mnesia
databases

• integrate specific constructs for code reflection

• check that a class specified in execute*As is indeed a (direct or not) mother
class of this one, at least in debug mode

• check that the declared attributes are legit (existing, not reserved, etc.) and their
access as well (ex: regarding constness)

• support qualifier-based declarations of methods and attributes (public, protected,
private, final, const, pure, etc.)

• generate automatically a graphical class diagram out of the sources of a set of
projects (ex: using PlantUML)

• ensure that all instances of a given class reference the same table dedicated to the
method look-ups, and do not have each their own private copy of it (mere ref-
erencing is expected to result from single-assignment); storing a per-class direct
method mapping could also be done with prebuilt modules: class_Cat would
rely on an automatically generated class_Cat_mt (for "method table") mod-
ule, which would just be used in order to convert a method name in the name of
the module that should be called in the context of that class, inheritance-wise;
or, preferably, this information could be added directly to class_Cat; note
that this should be the case now that the use of persistent_term has been
integrated

70

http://plantuml.com/

Licence
Ceylan-WOOPER is licensed by its author (Olivier Boudeville) under a disjunctive tri-
license, giving you the choice of one of the three following sets of free software/open
source licensing terms:

• the Mozilla Public License (MPL), version 1.1 or later (very close to the former
Erlang Public License, except aspects regarding Ericsson and/or the Swedish
law)

• the GNU General Public License (GPL), version 3.0 or later

• the GNU Lesser General Public License (LGPL), version 3.0 or later

This allows the use of the WOOPER code in as wide a variety of software projects
as possible, while still maintaining copyleft on this code.

Being triple-licensed means that someone (the licensee) who modifies and/or dis-
tributes it can choose which of the available sets of licence terms he is operating under.

We hope that enhancements will be back-contributed (ex: thanks to merge re-
quests), so that everyone will be able to benefit from them.

71

http://www.mozilla.org/MPL/MPL-1.1.html
http://www.erlang.org/EPLICENSE
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/lgpl.html

Sources, Inspirations & Alternate Solutions
• Concurrent Programming in Erlang, Joe Armstrong, Robert Virding, Claes

Wikström et Mike Williams. Chapter 18, page 299: Object-oriented Program-
ming. This book describes a simple way of implementing multiple inheritance,
without virtual table, at the expense of a (probably slow) systematic method
look-up (at each method call). No specific state management is supported

• Chris Rathman’s approach to life cycle management and polymorphism ; inher-
itance not supported

• ECT, an Object-Oriented Extension to Erlang, very promising yet apparently not
maintained anymore

• As Burkhard Neppert suggested, an alternative way of implementing OOP here
could be to use Erlang behaviours. This is the way OTP handles generic func-
tionalities that can be specialised (e.g. gen_server). One approach could be
to map each object-oriented base class to an Erlang behaviour; see some guide-
lines about defining your own behaviours and making them cascade (warning:
probably dead links now)

• As mentioned by Niclas Eklund, despite relying on quite different operating
modes, WOOPER and Orber, an Erlang implementation of a CORBA ORB
(Object Request Broker) offer similar OOP features, as CORBA IDL implies
an object-oriented approach (see their OMG IDL to Erlang Mapping; warning:
probably a dead link now)

WOOPER and Orber are rather different beasts, though: WOOPER is quite lightweight
(less than 25 000 lines of code, including blank lines, numerous comments, tests and
examples), does not involve a specific (IDL) compiler generating several stub/skeleton
Erlang files, nor depends on OTP or on Mnesia (but depends on Myriad), whereas Or-
ber offers a full, standard, CORBA implementation, including IDL language mapping,
CosNaming, IIOP, Interface Repository, etc.

Since Orber respects the OMG standard, integrating a new language (C/C++, Java,
Smalltalk, Ada, Lisp, Python etc.) should be rather easy. On the other hand, if a
full-blown CORBA-compliant middleware is not needed, if simplicity and ease of un-
derstanding is a key point, then WOOPER could be preferred. If unsure, give a try to
both!

See also another IDL-based approach (otherwise not connected to CORBA), the
Generic Server Back-end (wrapper around gen_server; warning: probably a dead
link now).

The WOOPER name is also a tribute to the vastly underrated Wargames movie
(remember the WOPR, the NORAD central computer?) that the author enjoyed a lot.
It is as well a second-order tribute to the Double Whopper King Size, which is a great
hamburger indeed23.

23Provided of course one is still fine with eating other animals (this is another topic).

72

http://www.angelfire.com/tx4/cus/shapes/erlang.html
http://www.erlang-factory.com/upload/presentations/162/ECT.pdf
http://wiki.trapexit.org/index.php/Defining_Your_Own_Behaviour
http://wiki.trapexit.org/index.php/Cascading_Behaviours
http://www1.erlang.org/doc/apps/orber/index.html
http://www.erlang.org/doc/apps/orber/ch_idl_to_erlang_mapping.html#6
http://www.erlang.org/doc/apps/ic/ch_erl_genserv.html#5
http://en.wikipedia.org/wiki/WarGames
http://en.wikipedia.org/wiki/WOPR

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be reported
to the project interface (typically issues) or directly at the email address mentioned at
the beginning of this longer document.

Please React!
If you have information more detailed or more recent than those presented in this doc-
ument, if you noticed errors, neglects or points insufficiently discussed, drop us a line!
(for that, follow the Support guidelines).

Ending Word
Have fun with WOOPER!

73

https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/issues

	Wrapper for Object-Oriented Programming in Erlang
	Table of Contents
	Overview
	Understanding WOOPER in Two Steps
	Motivations & Purpose
	The WOOPER Mode of Operation in a Nutshell
	Example

	Why Adding Object-Oriented Capabilities To Erlang?
	How to Use WOOPER: Detailed Description & Concept Mappings
	Classes
	Instances
	Methods
	State Management
	Multiple Inheritance & Polymorphism
	Life-Cycle
	Passive Instances

	Miscellaneous Technical Points
	Helper vs Static
	Calling a Method Clause from Another
	Integrated Call APIs
	Methods Not Returning Anything of Interest
	Exception-Throwing Methods
	delete_any_instance_referenced_in/2
	EXIT Signals / Messages
	DOWN Messages for Process Monitors
	Node Monitors
	A bit of Introspection
	Developer Guidelines
	Class Developer Cheat Sheet
	Source Editors
	Similarity With other Languages
	WOOPER limitations

	WOOPER Example
	Class implementations
	Tests

	Good Practices
	Troubleshooting
	Debug Mode
	"No attribute declaration found" whereas a class_attributes define exists
	Compilation Error Pointing to wooper_for_classes.hrl
	General Case

	Current Stable Version & Download
	Prerequisites
	Using Cutting-Edge GIT
	Using OTP-Related Build/Runtime Conventions
	Using Hex
	Testing WOOPER

	Version History & Changes
	Version 2.0 [current stable]
	Version 1.x
	Version 1.0
	Version 0.4
	Version 0.3
	Version 0.2
	Version 0.1

	WOOPER Inner Workings
	General Principles
	Method Virtual Table
	Attribute Table

	Issues & Planned Enhancements
	Licence
	Sources, Inspirations & Alternate Solutions
	Support
	Please React!
	Ending Word

