
Ceylan-Curry, a Haskell Cookbook

Organisation: Copyright (C) 2021-2021 Olivier Boudeville

Contact: about (dash) curry (at) esperide (dot) com

Creation date: Tuesday, September 7, 2021

Lastly updated: Monday, September 13, 2021

Version: 0.0.1

Status: Work in progress

Dedication: Anyone wanting to discover the Haskell programming
language.

Abstract: The purpose of this Curry cookbook is to help newcom-
ers getting up to speed with functional programming as done
based on the Haskell language.

The latest version of this documentation is to be found at the official Curry
website (http://curry.esperide.org).

1

http://curry.esperide.org/
https://www.haskell.org/
http://curry.esperide.org
http://curry.esperide.org

Table of Contents

2

Overview
The purpose of this Curry cookbook is to help newcomers getting up to speed
with functional programming when relying on the Haskell language1 for that.
More precisely, this cookbook is to summarise the various elements that we

found useful to remember when wanting to program in Haskell. We hope that
it may be useful whereas either one never really practiced that art or already

forgot essential elements of it.
So the goal of Curry is to be quicker to read/browse than it would be to start
the learning again from scratch, and never reaching the latter parts thereof
(knowing that the learning curve of Haskell is unfortunately rather steep).

Note
As this cookbook is being written as we are in the process of learning
Haskell, errors, misconceptions and epic blunders are bound to occur
in this text; if you detect such issues, please contact us so that we can
correct this document accordingly. Thanks in advance!

Cookbook Conventions
The character denotes here equivalence of expressions; ex: 2 * x x + x.
For clarity, the formal characters like , and → are replaced by the one that

you would type (namely \, >> and ->).

Concepts

Functional Programming (FP)
A programming style based on the application of functions (more information).

Arity
The (maximal) number of arguments expected by a function.

Expressions
• conditional ones: if/then/else (ex: if n >= 0 then n else -n)

• guarded: | can be read as "when (some condition is true)"; knowing that
otherwise = True allows to define default clauses

• lambda expressions are just anonymous functions; ex: \x -> 4 + 2*x

1This cookbook is in some way a Haskell counterpart of what we did for Erlang, with the
software stack whose first layer is Ceylan-Myriad.

3

http://curry.esperide.org/
https://www.haskell.org/
https://en.wikipedia.org/wiki/Functional_programming
https://myriad.esperide.org

Operators
Operator Precedence

Precedence allows to define the order of the operations.
If the precedence of op1 is higher than the one of op2, then x op1 y op2 z

shall be read as: (x op1 y) op2 z.
See the precedence table for all Haskell operators.

By using the :info GHCi command, the precedence levels of operators can be
returned:

Prelude> :info +
type Num :: * -> Constraint
class Num a where

(+) :: a -> a -> a
...

-- Defined in ‘GHC.Num’
infixl 6 +

Operator Associativity

This determines how operators of the same precedence are grouped in the
absence of parentheses.

Operators may be:

• associative, meaning the operations can be grouped arbitrarily

• left-associative, meaning the operations are grouped from the left: 2-3+4
= (2-3)+4

• right-associative, meaning the operations are grouped from the right:
2^3^4 = 2^(3^4)

• non-associative, meaning operations cannot be chained, often because
the output type is incompatible with the input types

Operator Calls

Operators are just functions that can be called:

• either directly: op1 x or op2 x y; for example: (-x) or (+) x 4

• or, for the ones of arity 2, as infix operators: x ‘op2‘ y op2 x y

Some Operators of Interest

Calling functions: the " " (pseudo-)operator Being central in FP,
function application is symbolised just by a space.

It behaves as the operator of the highest precedence; therefore f a + b (f
a) + b

(rather than f (a + b))2.

2Another example: an expression that could be described informally as f(a,b) + c.d
translates in Haskell as f a b + c*d or ((f a) b) + c*d".

4

https://en.wikipedia.org/wiki/Order_of_operations
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-820004.4.2
https://en.wikipedia.org/wiki/Operator_associativity
https://en.wikipedia.org/wiki/Operator_associativity

This pseudo-operator is left-associative: f g h ((f g) h).
f g x corresponds to the application of a function g and of a variable x at f
(i.e. f(g,x)); if wanting to express f(g(x)), rely on f (g x) or, even better,

on f.g x.

Consing lists: the ":" operator This operator, named cons (for
construct), allows to define lists by appending successively elements, starting

from the empty list ([]; designated as nil).
The : operator is right-associative:

x:y:z:l x:(y:(z:l))

Example:

[4,5,3] = 4:5:3:[]

Function Arrow: the "->" operator It allows to specify the datatypes
involved in the type definition of a function.

This operator is right-associative:

A -> B -> C -> A -> (B -> (C -> D))

Example:

-- mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

-- mult x y z = ((mult x) y) z
mult x y z = x*y*z

Composition: the "." operator

Non-Binding Function Application: the "$" operator The $ operator
is another way, besides the usual function application (denoted by a space) , of

applying arguments to a function.
This is the operator of least precedence. It has been introduced in order to

further avoid the use of parentheses:

a $ b op c a (b op c)

When a $ is encountered, the expression on its right is applied as the
argument to the function on its left, as if a virtual parenthesis was opened

there, and a closing one added at the end of the expression.
This operator is right-associative: f $ g $ h (f $ (g $ h)).

So this operator is the "opposite" of the base function application in terms of
precedence and associativity - but otherwise is the same in terms of definition

(including typing):

($) :: (a -> b) -> a -> b
f $ x = f x

5

Function
An association from a set of arguments to a set of corresponding results.

double x = 2*x

sum :: Num a => [a] -> a
sum [] = 0
sum (n:ns) = n + sum ns

A function may not be defined for all (well-typed) combinations of its
arguments.

For example head [] is to throw an exception.
A function is a value like the other datatypes (first-class citizen).

Thanks to the algebraic datatypes such as lists and tuples, a function may
take and return an arbitrary number of values (thus including functions).
A function may be only partially applied: its last argument(s) may not

specified in a given call. Then the value of the overall expression is a function
of these remaining, unspecified arguments.

For example, if f :: (Int,Float) -> Bool then f 3 :: Float -> Bool.
By default functions are polymorphic, insofar as they will accept all types
determined as compatible. For example zip :: [a] -> [b] -> [(a,b)]

can handle any types for a and b.
Functions are defined from expressions and based on pattern matching, which

operates on few possible patterns that are examined in turn, from top to
bottom:

• function application, like in:

(&&) :: Bool -> Bool -> Bool
True && b = b
False && _ = False

• tuple patterns, like in:

fst :: (a,b) -> a
fst (x,_) = x

• list patterns, like in:

tail :: [a] -> [a]
tail (_:xs) = xs

The ‘_’ character acts as a "wildcard" (it matches any value).
Note that a non-empty list is (a bit surprisingly) to be pattern-matched with

(x:xs) and not [x:xs]. For example:

product :: Num a => [a] -> a
product [] = 1
product (n:ns) = n * product ns

The same name cannot be specified for two arguments to match when they are
equal; a guard must be used for that. Finally pattern matching can operate on

few possible patterns: function application, tuple and list ones, that’s it.

6

https://en.wikipedia.org/wiki/Algebraic_data_type

Guards
Functions can be defined using guarded equations, to select which clause

applies based on the first one from the top to evaluate to True. As Haskell can
guarantee that these functions are pure, guards can be user-defined (rather

than be taken in a limited selection of built-in guards).
For example:

abs | n >= 0 = n
| otherwise = -n

Currying
A function taking its arguments one by one (one at a time, from left to right),
each time returning a function of a decremented arity, is said to be curried.
Such 1-arity functions are those directly modelled by the lambda calculus, an

essential base of the functional languages.
As the function arrow operator (->) is right associative, the type of functions

is preferably written as:

f :: TArg1 -> TArg2 -> ... -> TArgn -> TResult

This corresponds to the following actual type:

f :: TArg1 -> (TArg2 -> (... -> (TArgn -> TResult))...)

Consequently, as their arguments are to be applied one by one from left to
right, the “ “ operator (function application is represented by the space

character) is right-associative:

f a1 a2 ... an (((f a1) a2) ... an)

Functions can thus all be seen as curried ones, and can also be directly
transposed as lambda ones; for example the following definitions define the

same function:

add :: Int -> Int -> Int
add x y = x + y

add :: Int -> (Int -> Int)
add = \x -> (\y -> x + y)

In this latter form:

• the type specification and the definition of the function respect the same
structure: XXX -> (XXX -> XXX)

• the function is designated (on the left of the = sign) without listing its
arguments (we have add =, not add x y =)3

• if the purpose of the function is to return another one, its intent is clearer
once expressed as a lamdba function

3This is certainly clearer yet, if no type specification is given, the arity of the function is
only implicit then.

7

Side Effects
They correspond to all the consequences that the evaluation of a code

(program, function) incurs besides its returned value.
Example:

• writing content on file, or on the screen

• reading from file or from the input devices (keyboard, mouse)

• changing the state of a value accessible from outside of the function

• sending a message to another process or through the network

• drawing a random value

These impure events are difficult to manage yet are generally necessary, as the
purpose of a program is to trigger "interesting side-effects"; a strictly pure

program would most probably have no actual use (except using time,
processing resources and adding the possibility of failure).

Typing
Notion of Type

A type is a set of associated values.
e :: T means that expression e is of type T.

Haskell infers types at compilation (static typing), which prevents to discover
many problems4 at runtime.

Some expressions that could be successfully evaluated can nevertheless be
rejected on type grounds (ex: if True then 1 else False), but in practice

it is hardly a problem.

Algebraic Datatypes

They are defined based on unions of values.
For example, in:

data MyFirstType = FirstValue | SecondValue | FirstConstructor T

MyFirstType is the name of the type. FirstValue and SecondValue are
(constructor) values.

FirstConstructor is a constructor, and T is a type name (not a constructor).
Type and constructor names can be the same, as no ambiguity can occur.

Polymorphic types can be defined:

data MySecondType a = ThirdValue | SecondConstructor a Int

4Of course other problems may occur; for example 1 ‘div‘ 0 is well-typed yet its execution
will fail.

8

Basic Types

• monomorphic: Bool, Char, String :: [Char], Int/Integer, Float/Double

• polymorphic: list, tuple, function

Char Example: ‘a‘.

Tuple A tuple is a fixed-sized, possibly heterogenous container.
Example:

("I am a tuple", 2, True)

List

Description A list is an arbitrary-sized, homogeneous container.
Example:

l1 = [1.0, 7.0, 2.0]
l2 = []
l3 = [100..]
l4 = 1 : 2 : 3 : []

List Comprehension Example:

u s = [toUpper c | c <- s]

More information: [1].

Folds Like the map, the various folds encapsulate a classical recursion
pattern.

foldr (r for right fold) evaluates from right to left, uses a right-associative
operator and is directly recursive:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

foldl (l for left fold) evaluates from left to right, uses a left-associative
operator and relies on an accumulator:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

9

https://wiki.haskell.org/List_comprehension

String A string is nothing but a list of (Unicode) characters: String
[Char].

Example: "Hello!" or ‘a‘:‘b‘:‘c‘:[]
A string cannot spread over multiple lines directly; the backslash (\) character

is needed for that:

s = "This is a unique \
\line."

(any text between the two \ is ignored)
A newline is designated in a string by \n.

Function See function.

Type Class

A type class is a set of types that support a set of functions called methods.
For example the Eq class is to gather all types that can be compared for

egality (or inegality), based on the following two methods:

(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

A type may belong to one or more classes.
Class constraints can be specified when typing a function. For example:

(+) :: Num a => a -> a -> a

The type variable a must be here an instance of class Num.
A type respecting at least one of such constraints is said overloaded, as is the

corresponding expression.
Well-known classes are: Eq, Ord, Show, Read, Num, Integral, Fractional.

Monad
Informal Descriptions

Various intuitive descriptions of a monad apply:

• a stateful datastructure representing some processing

• an abstraction, a generic concept allowing to structure programs generi-
cally and to unify in a functional way various problems (to structure them
and favour separation of concerns)

• programmable ";" (semicolons whose effect can be defined)

• a structure allowing to express imperative traits in functional languages, to
convey notions like exceptions or side-effects while preserving their purity

• a way of describing and composing impure expressions in a pure context:
a monad is an expression still to be evaluated (potentially inducing then
side-effects), yet able to be integrated in a pure context

10

• the code source of an imperative program that, once executed, returns
a value of a specified type and that can be chained with other programs
taking and returning such values; the language handles then the imperative
programs themselves (ex: their source) rather than the values they return

More Formally

A monad M is a (type, return function, bind function) triplet with:

• a monadic constructor: t -> M t

• a function named return that, through the previous constructor, allows
to obtain, from a value of type a, a value of monadic type M a: return:
t -> M t

• a function named bind that allows to compose a monadic function5 with
others, represented by the >>= infix operator so that: >>= :: M t -> (
t -> M u) -> M u

Mt >>= f (i.e. "bind Mt f") allows to apply the f function to the value of type
t encapsulated in Mt; >>= drives the chaining of monadic functions (as such it

handles functions, not values).
By composing >>= with return, any function g :: t -> t can be applied to
a monad of type M t (here the types u and t in the definition of bind are the

same).
These functions (f et g) are only aware of the value (t) encapsulated in the

monad, not the monad (M t) itself.
So the developer composes a sequence of function calls (a pipeline) by chaining
binds in an expression. Functions transform the values that they receive ; then
the bind operator controls the returned monadic values (ex: it can enrich them
outside of the view of these chained functions) and the next calls (ex: it can

make them conditional).
So a monad of type M t is an algebraic datatype that derives from type t.

The elements of the monadic triplet shall respect following 3 axioms, return
behaving like a neutral element from >>=:

• left composition by return, with: (return x) >>= f f x

• right composition by return, with: m >>= return m

• associativity of bind, with: (m >>= f) >>= g m >>= \x . (f x >>=
g)

Refer to this article for more information.

In a Nutshell

A monad M defines a type that represents a processing and is associated to two
operators:

• return: to encapsulate a value of type t in this monad (resulting in a
monadic value M t)

• bind, i.e. >>=: to compose monadic functions
5A monadic function is a function returning a monadic value.

11

https://en.wikipedia.org/wiki/Monad_(functional_programming)

Examples

The IO monad is probably the most well-known monad. IO t represents an
imperative program taking no parameter and returning a value of type t.

For example:

• IO () denotes, with the empty tuple (), a program returning no specific
value (akin to void in some languages)

• the getLine‘‘function is of type ‘‘IO String, it returns the string
entered on the keyboard by the user

A second example is the one of Maybe, as taken from this article
The Maybe-type (so here M = Maybe) is: Maybe t :: Just t | Nothing

The Maybe-return is:

return :: t -> Maybe t
return undefined = Nothing
return O -> Just O

The Maybe-bind is:

(>>=) :: Maybe t -> (t -> Maybe u) -> Maybe u
Nothing ‘‘‘>>=‘‘‘ f = Nothing
(Maybe a) ‘‘‘>>=‘‘‘ f = Just(f a)

The Maybe monad allows to handle errors: as soon as a function call fails, the
next binds short-circuit the processing rather than letting the next functions

be evaluated in turn.
A third example is seqn, to transform a list of actions with side-effects (ex:

IO) returning a result of type a into a single of such action:

seqn :: Monad m => [m a] -> m [a]
seqn [] = return []
seqn (act:acts) = do x <- act -- *performs* this ’act’ action

xn <- seqn acts
return (x:xs)

Properties

• any monad can be characterized as an adjunction between two (covariant)
functors

• the monad as defined in category theory has been applied to functional
programming, in order to provide semantics for the lambda calculus

Interest

• as monadic values represent explicitly not only computed values but also
the effects that these evaluations trigger, a monadic expression can be
freely replaced by its value (referential transparency), which enables the
use of various optimisation approaches based on rewriting

12

https://en.wikipedia.org/wiki/Monad_(functional_programming)#An_example:_Maybe

• a monad captures, centralises and unifies once for all recurring schemes to
integrate side effects that would be otherwise more difficult to handle (ex:
with CPS, Continuation-Passing Style

• monads may register additional data that are inaccessible from functions
and/or may drive their execution (ex: conditional call)

• monads may favour aspect-oriented programming, in the sense that they
allow the developer to focus on his domain-specific logic (as the binding
code, provided by the monad, is defined separately - and once for all)

Usages

• to condense code and to tie it to a mathematical formulation (compilation-
time version of the "decorator pattern"

• to facilitate static analysis and program proofs

• to support the definition of simple DSL (Domain-Specific Languages) and
to combine parsing rules

• to support the traversal of datastructures (see zipper)

• to transform complicated sequences of function calls into a compact pipeline
abstracting out the management of additional data, flow control and side-
effects

• to rely on call-by-need

• to allow for optimisations such as:

– deforestation (a.k.a. fusion or "tree suppression"): a program trans-
formation to eliminate intermediate lists or tree structures that are
created and then immediately consumed by a program

– memoisation: the caching of results of function calls in order to com-
pute them once

– parallelisation: to split a program between multiple logical processes
– strong reduction: when -reduction in the -calculus are also performed

on function bodies

See also this section about monad applications.

Lazy Evaluation
Most languages perform strict, eager evaluation: to evaluate a function call,

first each of the supplied argument is fully evaluated, then the function itself is
evaluated, based on the values jst computed for its arguments.

On the contrary, lazy evaluation strives to defer as much as possibly
evaluations - possibly delaying up to the point of having never to perform

them.
Lazy evaluation is convenient to express higher-level programs (ex: handling

infinite lists such as [1,...]), yet makes it harder to predict the behaviour of
programs at least in terms of resource consumption (time, memory, etc.).

For an increased control, strict evaluation can nevertheless be forced.

13

https://en.wikipedia.org/wiki/Continuation-passing_style
https://en.wikipedia.org/wiki/Zipper_(data_structure)
https://en.wikipedia.org/wiki/Deforestation_(computer_science)
https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Monad_(functional_programming)#Applications

Arrows
An arrow (a.k.a. "bolt") is a type class representing computations in a pure

way; this monad generalisation allows to express the relationships between the
logical steps of a processing.

Refer to this article for more information.

Lambda Calculus
The lambda calculus is a simple yet powerful theory of functions. Its basis is to
consider that all program elements are functions. An expression may include
functions that are not yet defined and that are then considered as variables.

This is a formal system designed by Alonzo Church in the 1930s to define the
concepts of function and (function) application. It relies on -expressions,

where denotes the binding of a variable. For example, if M is a -expression,
then x.M is also one, and represents the function that to the x variable

associates M (i.e. \x -> M x here).
The -calculus has been the first formalism defining and characterising the
recursive functions, and as such is essential to the theory of computing.

It is used as theoretical programming language and also as metalanguage for
formal proof.

-calculus may or may not be typed.
Refer to this article for more information.

Haskell Syntax

Reserved Words
They cannot be used to name functions or variables:

case, class, data, deriving, do, else, if, import,
in, infix, infixl, infixr, instance, let, of, module,
newtype, then, type, where

Comments
A single-line comment starts with -- and extends to the end of the line.

Multi-line comments start with {- and extend to -}.
Example:

size = 3 -- This is a constant here.

{- Comments are essential for understanding.

Consider writing them.

-}

Comments can be nested.
See also the comment conventions for the Haddock documentation generator.

14

https://en.wikipedia.org/wiki/Arrow_(computer_science)
https://en.wikipedia.org/wiki/Lambda_calculus

Literate programming (where text is by default a comment, unless being
specifically designated as code) is possible in an Haskell script, whose

extension shall then be .lhs (for Literate Haskell).

Haskell Tools

Glasgow Haskell Tools
They include a compiler (GHC) and an interpreter (GHCi).

Haddock: a Haskell Documentation Tool
Haddock generates documentation from annotated Haskell source code

(typically libraries).
So that they are taken into account by Haddock, comments above function

definitions should start with {- |, and those next to parameter types with --
^.

Example of use:

-- |The ’square’ function squares an integer.
-- It takes one argument, of type ’Int’. square :: Int -> Int
square x = x * x

{-|
The ’cube’ function cubes an integer.
It takes one argument, of type ’Int’.
-}

cube x = x * square x

data T a b
= C1 a b -- ^ This is the documentation for the ’C1’ constructor
| C2 a b -- ^ This is the documentation for the ’C2’ constructor

See this page for more information regarding markup.

Haskell Conventions

Index
They start at zero:

[1,2,3,4] !! 1 = 2

Whitespaces
One should avoid tabulations (i.e. prefer spaces).

Generally the least number of spaces is preferred; like in: sum $ map sqrt
[1..10].

15

https://wiki.haskell.org/Literate_programming
https://www.haskell.org/haddock/
https://haskell-haddock.readthedocs.io/en/latest/markup.html

Naming
The names of functions and arguments start with a lowercase character and

are followed by any number of: numbers, letters (of any case), underscores and
single quotes.

The names of types and constructors start with an uppercase letter.

Shortness
Most Haskell developers seem to strongly dislike typing, often resulting in

cryptic names for functions (ex: fst) and variable names (often reduced to a
single character whose meaning is never disclosed).

A lot of efforts went especially to save keystrokes and more precisely to remove
as much as possible the need for parentheses (function application being

denoted as a space, the . and $ operators being introduced, etc.). This allows
very compact definitions of functions out of functions (ellipsing values as
such), and an increased expressivity, sometimes at the expense of clarity.

Extra documentation may alleviate this problem.
Single-letter variable names often denote their type (ex: c for a Char variable),
and are suffixed by s to indicate this is a list thereof (ex: bs for a variable of

type [Bool], css for a [[Char]] one).

Layout & Indentation
Indentation matters, as spaces denote scopes:

a = b + c
where
b = 1
c = 2

d = a * 2

An alternative layout based on curly braces and semi-colons exists, yet its use
is discouraged.

A function body shall be indented of at least one space compared to the
function name (if indented at all).

As any where or let use must be, indentation-wise, between the name and the
body of a function, we prefer, compared to the function name:

• a 2-space indentation for the body

• a 1-space indentation for where / let body

For example:

square x =
sq

where sq = x * x

16

Haskell In Practice

Installing Haskell
On Arch Linux (see this page for more information): pacman -Sy ghc

cabal-install stack.
See also our corresponding script for continuous integration.

Running Haskell
Except for performances, programs can be tested directly with ghci, like in:

$ ghci Foobar.hs

The very essential GHCi commands are:

• :? or :help: lists available commands

• :load FILENAME: loads specified script

• :reload or :r: reloads the current module, file, or project

• :: repeats the previous command

• :type or :t: returns the type of specified expression (value or function);
ex: :t not False

• set editor NAME: sets the code editor to NAME

• edit FILENAME: edits specified script

• edit: edits current script

• :quit or CTRL-D: quits the interpreter

For example:

$ ghci
GHCi, version 8.10.5: https://www.haskell.org/ghc/ :? for help

Prelude> :type not
not :: Bool -> Bool

Functions can be directly redefined:

Prelude> fac n = product [1..n]
Prelude> fac 5
120

Prelude> fac _ = 0
Prelude> fac 5
0

17

https://wiki.archlinux.org/title/haskell
https://github.com/Olivier-Boudeville/Ceylan-Curry/blob/main/.github/workflows/curry-ci.yml
https://typeclasses.com/ghci/commands

Haskell-related Filenames
Filenames

They may or may not start with a capital letter (and no specified convention
applies).

They may be in snake_case or in CamelCase.
Ex: my_test.hs, HelloWorld.hs.

Extensions

The main extensions are:

• .hs: Haskell source code (to preprocess then compile)

• .lhs: literate Haskell source (to unlit, preprocess and compile), where all
text is comment by default, and code is specifically designated as such

• .hi: interface file; contains information about exported symbols

• .hc: intermediate C files

A very basic Foobar.hs source file once compiled results in a standard
Foobar.o object file, typically:

ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

If Foobar.hs defines a suitable main function, once linked it results in a
standard Foobar.o executable, typically (depending on the build options):

ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 4.4.0, BuildID[sha1]=[...], not stripped

In terms of shared libraries, this boils down to, for example:

linux-vdso.so.1
libHSbase-4.14.2.0-ghc8.10.5.so => /usr/lib/ghc-8.10.5/base-4.14.2.0/libHSbase-4.14.2.0-ghc8.10.5.so
libHSinteger-gmp-1.0.3.0-ghc8.10.5.so => /usr/lib/ghc-8.10.5/integer-gmp-1.0.3.0/libHSinteger-gmp-1.0.3.0-ghc8.10.5.so
libHSghc-prim-0.6.1-ghc8.10.5.so => /usr/lib/ghc-8.10.5/ghc-prim-0.6.1/libHSghc-prim-0.6.1-ghc8.10.5.so
libHSrts-ghc8.10.5.so => /usr/lib/ghc-8.10.5/rts/libHSrts-ghc8.10.5.so
libgmp.so.10 => /usr/lib/libgmp.so.10
libc.so.6 => /usr/lib/libc.so.6
libm.so.6 => /usr/lib/libm.so.6
librt.so.1 => /usr/lib/librt.so.1
libdl.so.2 => /usr/lib/libdl.so.2
libffi.so.7 => /usr/lib/libffi.so.7
libpthread.so.0 => /usr/lib/libpthread.so.0
/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2

Build System
One may rely on the Haskell transposition of our simple, usual make-based

build system (refer to the GNUmake* files; see this section of our Erlang-based
Myriad counterpart for more details).

18

https://github.com/Olivier-Boudeville/Ceylan-Curry
https://myriad.esperide.org/#general-build-structure

Haskell Resources

To Learn
We would certainly recommend browsing the pleasant Learn You a Haskell for
Great Good! website or, even better, buying their book; another worthwhile
book is Programming in Haskell, whose author is Graham Hutton, that we

found interesting and well-written as well.
Of course the official Haskell website is also of interest.

Cheat Sheets
See Justin Bailey’s one.

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email

address mentioned at the beginning of this cookbook.

Please React!
If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,

drop us a line! (for that, follow the Support guidelines).

Ending Word
Have fun with Haskell and functional programming!

19

http://learnyouahaskell.com/
http://learnyouahaskell.com/
https://www.haskell.org/
https://cheatsheet.codeslower.com/
https://github.com/Olivier-Boudeville/Ceylan-Curry
https://github.com/Olivier-Boudeville/Ceylan-Curry/issues

	Table of Contents
	Overview
	Cookbook Conventions
	Concepts
	Functional Programming (FP)
	Arity
	Expressions
	Operators
	Operator Precedence
	Operator Associativity
	Operator Calls
	Some Operators of Interest
	Calling functions: the " " (pseudo-)operator
	Consing lists: the ":" operator
	Function Arrow: the "->" operator
	Composition: the "." operator
	Non-Binding Function Application: the "$" operator

	Function
	Guards
	Currying
	Side Effects
	Typing
	Notion of Type
	Algebraic Datatypes
	Basic Types
	Char
	Tuple
	List
	String
	Function

	Type Class

	Monad
	Informal Descriptions
	More Formally
	In a Nutshell
	Examples
	Properties
	Interest
	Usages

	Lazy Evaluation
	Arrows
	Lambda Calculus

	Haskell Syntax
	Reserved Words
	Comments

	Haskell Tools
	Glasgow Haskell Tools
	Haddock: a Haskell Documentation Tool

	Haskell Conventions
	Index
	Whitespaces
	Naming
	Shortness
	Layout & Indentation

	Haskell In Practice
	Installing Haskell
	Running Haskell
	Haskell-related Filenames
	Filenames
	Extensions

	Build System

	Haskell Resources
	To Learn
	Cheat Sheets

	Support
	Please React!
	Ending Word

