
Ceylan’s HOWTO

Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Wednesday, November 17, 2021

Lastly updated: Sunday, May 4, 2025

Version: 0.0.2

Status: In progress

Dedication: Users of these HOWTOs

Abstract: The role of these HOW-TOs is, akin to a cookbook, to
share a collection of (technical) recipes ("how-to do this task?)
regarding various topics.
These elements are part of the Ceylan umbrella project.

The latest version of this documentation is to be found at the official Ceylan-
HOWTOs website (http://howtos.esperide.org).

Note
This PDF document includes cross-references between HOWTOs, yet
these links make sense only in the context of its HTML counterpart.

1

https://github.com/Olivier-Boudeville/Ceylan
http://howtos.esperide.org
http://howtos.esperide.org
http://howtos.esperide.org

Table of Contents
Using the GNU/Linux Operating System 3

Overview . 3
Software Update . 3
Package Management . 5
A few System Installation Hints . 7
Systemd-related Hints . 8
Process-related Post-Mortem Investigations 9
Preparing Adequate USB Keys . 10
GRUB Ate My Distro Again: Fixing the Bootloader 17
Other Filesystem-related Issues . 20
Quick Topics . 21
See Also . 30

Erlang 31
Overview . 31
Let’s Start with some Shameless Advertisement for Erlang and the

BEAM VM . 31
Installation . 31
Ceylan’s Language Use . 32
Using the Shell . 32
Distributed Mode of Operation . 33
About Security . 35
OTP Guidelines . 36
More Advanced Topics . 40
Language Bindings . 42
Language Implementation . 42
Short Hints . 45
Micro-Cheat Sheet . 52
Erlang Resources . 56

Rust 58
Overview . 58
Documentation . 58
Installation . 58
Examples . 59
Related Tools . 59
More Advanced Topics . 60
Mode of Operation . 60
Quick Facts . 61
Language Bindings . 61
Short Hints . 61
Micro-Cheat Sheet . 61
Rust Resources . 61

2

About 3D 62
Cross-Platform Game Engines . 62
3D Data . 66
Modelling Software . 71
Other Tools . 71
OpenGL Corner . 73
Operating System Support for 3D . 97
Minor Topics . 98
3D-Related Mini-Glossary . 98

Online Interactive Multimedia 100
Overview . 100
Networking Subsystem . 100
Application Architecture . 102

Network Management 103
Investigating Network Issues . 103
Firewall Management . 103
Network Troubleshooting . 107
See Also . 108

A Bit of Cybersecurity 109
Pointers to various Security Topics . 109
Authentication Using SSH . 109
Securing One’s E-mail Service In General 110
Increasing Security thanks to OpenPGP 111
A Link With Decentralized Identifiers 122

About Build Tools 123
Purpose of Build Tools . 123
Choice . 123
GNU make . 123
See Also . 124

Version Control Systems: in Practice, now, Git 125
Overview . 125
Git Usage . 125
Tools . 135
Inner Workings . 135
Translations . 136
Documentation . 136

Documentation Generation 137
Objective . 137
Our Preferred Lightweight Approach 137
Our Preferred More Heavy-Duty Approach 143
Miscellaneous . 146

3

Data Management 155
Overview . 155
General-Purpose Data Format . 155
Data-related Processing Tools . 157
Data-related Displaying Tools . 163

Emacs 165
Overview . 165
Installation . 165
Configuration . 165
Hints . 167
Troubleshooting . 171

Please React! 172

Ending Word 172

4

Using the GNU/Linux Operating System
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Sunday, December 19, 2021

Lastly updated: Friday, May 2, 2025

Table of Contents
Overview . 3
Software Update . 3
Package Management . 5

Configuration . 5
Package-related Commands 5
Interesting Packages . 6
Bulk Installations . 6
AUR Installations . 7

A few System Installation Hints 7
Systemd-related Hints . 8

Systemd Commands . 8
Systemd Journal . 8

Process-related Post-Mortem Investigations 9
Preparing Adequate USB Keys 10

Objective . 10
Conventions, conventions 10
Targeting the Right Device 11
Creating the Partitions . 11
Erasing a Target Partition 12
Creating Plain, Unencrypted Partitions 12
Creating Encrypted Partitions 13

GRUB Ate My Distro Again: Fixing the Bootloader . 17
Prerequisites . 17
Running a Live Rescue Arch 17
Preparing the chroot . 17
Managing the chroot . 18
(Re)Installing GRUB . 18
Configuring GRUB . 19
Finally . 20

Other Filesystem-related Issues 20
Target is busy . 20
Failed I/O Operations . 20
Checking a Disk . 20

Quick Topics . 21
Relying on Stable and User-Friendly Names for Network

Interfaces . 21
Installing Wine . 22
Overcoming Invalid PGP Signatures in Pacman Packages . 22

5

Protecting Files and Directories 22
Converting Data Formats 22
Adding a Locale . 22
Performing Searches and Replacements 23
XFCE4 configuration . 23
Solving PulseAudio Issues 23
Using Visual Studio Code 24
Using E-mail Clients . 25
Sandboxing an Application 25
Recording a Screencast . 26
Specifying iterations with Bash 26
Shell Auto-completing the available make targets 26
Mini Shell Cheat Sheet . 26
Mini GNU sed Cheat Sheet 28
Mounting Manually crypttab-declared Partitions 28
Recommended Tooling . 28
Other User Settings . 28
Tool-Specific Shortcuts . 29

See Also . 30

Overview
GNU/Linux is our operating system of choice, for many reasons: it is in free
software, it is efficient, trustable, reliable and controllable, its mode of operation
does not change much over time so any time invested on it is well spent.

Over the years we tried many distributions, including Ubuntu, Debian, Gen-
too, Mint.

Our personal all-time favorite is clearly Arch Linux, because it leaves much
control to its end user (not attempting to hide details that have to be mastered
anyway), it is a "clean" one, driven by a skilled and knowledgeable community,
and also because it is a rolling distribution: it updates constantly its packages
without needing to regularly upgrade the whole system, which would jeopardise
it in the same movement (global system updates rarely complete successfully
and tend to be postponed because of the many problems they trigger; we found
preferable to deal with issues incrementally on a live system - rather than on
one that may fail to reboot properly).

It ends up with a very stable, hassle-free distribution, with cutting-edge
packages and higher uptimes (several months without needing to reboot), which
is desirable for server-like usages.

Software Update
The setup that we use is to perform automatic nightly updates. For that
we use our update-distro.sh script, run through root’s crontab as:

$ crontab -l
Each day at 5:17 AM, update the distro:
17 05 * * * /usr/local/bin/update-distro.sh -q

6

https://en.wikipedia.org/wiki/Arch_Linux
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/update-distro.sh

As a result, all packages, libraries, executables, etc. are transparently up-
dated, for the best.

However, for a proper management of modules3, the kernel-related packages
shall be special-cased; otherwise after the first kernel update no more modules
can be loaded (they will expect to link to that latest installed kernel version,
not to the older one being running).

A first line of defense is to force the loading of the modules known to be of
interest directly at boot-time, so that they can be for sure loaded and linked to
the right kernel.

This may be done by populating /etc/modules-load.d/ with as many files
listing the modules to auto-load, like in:

::::::::::::::
/etc/modules-load.d/for-3g-keys.conf
::::::::::::::
option
usb_wwan

::::::::::::::
/etc/modules-load.d/for-all-usb-keys.conf
::::::::::::::
To be able to mount all kinds of USB keys:
vfat
uas
dm_crypt

::::::::::::::
/etc/modules-load.d/for-mobile-file-transfer.conf
::::::::::::::
To be able to transfer files between this hosts and mobile phones by MTP:
nls_utf8
isofs
sr_mod
cdrom
Maybe also: agpgart ahci wdat_wdt wmi_bmof xts

::::::::::::::
/etc/modules-load.d/for-tty-serial-on-usb.conf
::::::::::::::
To be able to connect tty-like interfaces through a USB port:
ftdi_sio
usbserial

::::::::::::::
/etc/modules-load.d/for-usb-tethering.conf
::::::::::::::
To enable an Internet access thanks to a smartphone via USB:

3We tried to rely on DKMS for that, but had still issues with some graphic-related modules,
so we preferred managing updates by ourselves.

7

https://wiki.archlinux.org/title/Dynamic_Kernel_Module_Support

usbnet
Implies:
#rndis_host
#cdc_ether

::::::::::::::
/etc/modules-load.d/for-vlan-support.conf
::::::::::::::
To be able to manage VLANs:
8021q

This is not sufficient though (e.g. one cannot anticipate all modules needed
after a while); disabling the automatic updates of kernels is also key to reduce
issues.

We chose to update automatically only the stable version of the kernel (i.e.
linux and al), and to freeze the LTS (Long Term Support) one (i.e. linux-lts
and al), used as a safer fallback (otherwise, if its version was too close from the
stable one, it might suffer from the very same problems). This can be done by
specifying in /etc/pacman.conf:

IgnorePkg = linux-lts linux-lts-headers

At least users of NVidia graphic cards may also list there their drivers, as
apparently an hardware acceleration supported at boot may be lost after some
time, presumably because of an update of its drivers (knowing that the update
of the kernel itself was already disabled in that case) - so, if appropriate, better
be safe than sorry:

IgnorePkg = linux-lts linux-lts-headers nvidia nvidia-utils

See also our section about operating system support for 3D.
Updating all packages but kernel-related ones is fine, but of course the latters

shall still be also updated appropriately. The best moment for that is just prior
to rebooting (knowing that your Linux box never crashes, isn’t it?), so for that
we use (as root) our shutdown-local-host.sh script, like in:

$ shutdown-local-host.sh --reboot

The kernel packages, and possibly driver-related ones, will then only be
properly updated before the host is rebooted.

Package Management
Configuration

One may enable the multilib repository, which is useful to run 32-bit software
on 64-bit hardware. This is useful for example if needing wine, knowing that
its build from the AUR may fail.

To enable multilib, uncomment in /etc/pacman.conf:

[multilib]
Include = /etc/pacman.d/mirrorlist

then upgrade your system with pacman -Syu.

8

ThreeDimensional.html#os-support
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/shutdown-local-host.sh
https://wiki.archlinux.org/title/Official_repositories#multilib

Package-related Commands

• to get information about a package (installed or not): pacman -Si MY_PACKAGE

• to list all packages:

– installed (explicitly or not): pacman -Q

– explicitly installed and not required as dependencies: pacman -Qet

• to install packages: pacman -S package_name1 package_name2

• to determine which package installed a specified file:

– on Arch: pkgfile SOME_FILE; pkgfile itself must have been in-
stalled beforehand, with pacman -S pkgfile, and be updated, with
pkgfile --update (still as root)

– on Debian: apt-file search SOME_FILE after a similar initial in-
stall thanks to: sudo apt-get install apt-file && sudo apt-file
update

– for many distros, one may rely on the command-not-found website

• to determine which package owns (would install) specified file(s): pacman
-Qo FILES

See this page for many more Arch-related commands.

Interesting Packages

They might be lesser known:

• cpulimit: the way of limiting CPU usage of a given process, for example
to avoid overheat (nice just defines respective process priorities)

• inotify-tools: to be able to monitor filesystem events (e.g. with inotifywait)
from scripts

• jq: for command-line JSON processing (e.g. jq . myfile.json to dis-
play it properly on a terminal)

• yq: for command-line YAML processing (e.g. yq . myfile.yaml to
display it properly on a terminal), or use our validate-yaml.sh script

• mathjax: to generate LaTeX-like images for the web

• most: a replacement for more

• pdftk: to transform PDF files

• pkgfile: to retrieve file information about packages

9

https://command-not-found.com/
https://wiki.archlinux.org/title/Pacman/Tips_and_tricks
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/validate-yaml.sh

Bulk Installations

These packages are listed thanks to pacman -Qet | cut -d’ ’ -f1, or even
pacman -Q | cut -d’ ’ -f1.

For the essentials (to be installed even before the first reboot from the ch-
root, to be able to access the Internet and to install other packages afterwards):

$ pacman -S --needed --noconfirm base dhcpcd dnsmasq emacs firefox git gnome-terminal gparted grub inetutils iproute2 iptables lightdm lightdm-gtk-greeter linux-headers linux-lts linux-lts-headers lsof make man man-pages mlocate nano netctl nmap openssh os-prober package-query pacman-contrib parted reflector sudo udisks2 which xfce4 xfce4-goodies xz zip zlib

For the generally useful tools:

$ pacman -S --needed --noconfirm 7zip alsa-utils android-file-transfer android-tools aspell-en aspell-fr base-devel bash-completion blender calibre chromium cronie curl diffutils dos2unix eog espeak-ng evince evolution exfat-utils firejail gedit geeqie gimp glu gnome-terminal gwenview htop inkscape inotify-tools iputils jq less libreoffice lsb-release lshw mathjax maxima meld mesa-utils most mpv mupdf nmap nuspell octave openresolv psensor python-docutils rsync rubber screen smartmontools thunar thunderbird traceroute transmission-qt tree vlc wget xlockmore yq

Note: gnome-keyring is needed so that evolution is able to store credentials.
Possibly useful: intel-ucode.

AUR Installations

Other packages can only be obtained through the AUR (Arch User Repository),
notably authbind, cpulimit, simplescreenrecorder.

As for AUR helpers, we use yay, which is itself in the AUR. To install it, see
its instructions or, better, use our update-aur-installer.sh script for that.

Then our install-arch-package.sh script can be used to install indifferently
all kinds (Arch or AUR) of packages.

A few System Installation Hints
Of course now only done with full UEFI, and GPT.

• define and apply a simple, reliable partition layout; typically for the main
disk (NVMe) of an Arch system of a computer meant:

– for daily use, this may be:

∗ /boot [vfat, type: EFI System]: 1 Go (more than enough to
host multiple kernels, a graphical bootloader, possibly Windows-
related files)

∗ / [ext4, type: Linux filesystem]: 120 Go (to have sufficient root
in order to install many packages)

∗ /home [ext4 over crypto_LUKS2, type: Linux filesystem]: all the
rest, in one chunk (preferably at least 400 Go)

∗ (no need for a dedicated partition for the swap)

– for a server/gateway, this may be:

∗ /boot [vfat, type: EFI System]: 1 Go (more than enough to host
multiple kernels)

∗ / [ext4, type: Linux filesystem]: 50 Go (to have sufficient root
in order to install many packages)

∗ /home [ext4 over crypto_LUKS2, type: Linux filesystem]: 200
Go

10

https://wiki.archlinux.org/title/Arch_User_Repository
https://wiki.archlinux.org/title/AUR_helpers
https://aur.archlinux.org/packages/yay
https://github.com/Jguer/yay?tab=readme-ov-file#installation
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/update-aur-installer.sh
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/install-arch-package.sh

∗ (swap) [swap, type: Linux swap]: 10 Go
∗ /var [ext4 over crypto_LUKS2, type: Linux filesystem]: all the

rest, in one chunk (preferably at least 400 Go)

• setup the pacman mirrors: initially with reflector --save /etc/pacman.d/mirrorlist,
and then regularly with systemctl enable reflector.service

• install relevant packages: see Bulk Installations

• enable SMART on all disks: list all actual disks (e.g. fdisk -l | grep
’^Disk /’ | grep -v mapper), and for each of them, activate SMART
(e.g. smartctl --smart=on --offlineauto=on --saveauto=on /dev/nvme0n1);
it may be necessary to specify a device type (e.g. smartctl -x /dev/sdc
--device=sntrealtek); a short test (e.g. smartctl --test=short /dev/nvme0n1)
may be performed on each of them

• rename properly network interface: see Relying on Stable and User-Friendly
Names for Network Interfaces

• set up automatic software update: see Software Update

Systemd-related Hints
Systemd is the current reference system and service manager for GNU/Linux.
It is in charge of configuring, launching, monitoring, controlling, etc. all the
software services running on a given host.

Systemd Commands

• listing the units:

– managed by systemd: systemctl list-units [PATTERN]

– installed (as files): systemctl list-unit-files [PATTERN] or tree
/etc/systemd/system

• getting runtime status information about units: systemctl status
[PATTERN]

• controlling units: systemctl start|stop|restart [PATTERN]

• reloading:

– a service-specific configuration of a unit: systemctl reload [PATTERN]
(e.g. requesting Apache to reload its own httpd.conf file)

– the systemd configuration file of a unit: systemctl daemon-reload
[PATTERN] (e.g. reloading the apache.service systemd unit file)

• enabling/disabling for good units (while not starting/stopping them):
systemctl enable|disable [PATTERN]

11

https://wiki.archlinux.org/title/S.M.A.R.T.

Systemd Journal

In order to query the contents of the systemd journal (as written by systemd-journald.service),
the journalctl command may be used.

To consult the journal:

• from:

– the oldest entry collected: journalctl

– last boot: journalctl -b

– yesterday: journalctl --since yesterday

– a given duration: journalctl --since "10 minutes ago"

– one or two time bounds: journalctl --since "2023-02-10 21:00:00"
--until "2023-02-10 22:00:00"

– the most recent journal entries, listing them to current end, and:

∗ stopping there: journalctl -e
∗ continuously printing the new entries as they are added: journalctl
-f (or --follow)

• for a given unit my_unit (see Systemd Commands for selection): journalctl
-u my_unit

• showing COUNT lines: add -n COUNT (default: 10)

So for example journalctl -n 200 -fu my_unit may be convenient to
have recent history together with the next entries to come.

Process-related Post-Mortem Investigations
Sometimes a UNIX process crashes and, typically if one developed it, one wants
to investigate the issue, based on a core dump produced by the operating system.

This Arch Linux article will give all relevant details.
In short, coredumpctl list will list all known core dumps from oldest to

most recent, such as in:

$ coredumpctl list
TIME PID UID GID SIG COREFILE EXE SIZE
[...]
Tue 2021-12-21 20:53:02 CET 73873 1007 988 SIGSEGV present [...]/bin/beam.smp 14.6M

The last core dump produced may be studied directly, thanks to coredumpctl
debug, relying on gdb to fetch much lower-level information:

$ coredumpctl debug
PID: 73873 (beam.smp)
UID: 1007 (xxx)
GID: 988 (users)

Signal: 11 (SEGV)
Timestamp: Tue 2021-12-21 20:53:01 CET (38min ago)

Command Line: /home/xxx/Software/Erlang/Erlang-24.2/lib/erlang/erts-12.2/bin/beam.smp -W w -K true -A 128 [...]

12

https://wiki.archlinux.org/title/Core_dump

Executable: /home/xxx/Software/Erlang/Erlang-24.2/lib/erlang/erts-12.2/bin/beam.smp
Control Group: /user.slice/user-1007.slice/session-2.scope

Unit: session-2.scope
Slice: user-1007.slice

Session: 2
Owner UID: 1007 (xxx)

Boot ID: f8abe9473f7e4fea8ba24944e35ce7d9
Machine ID: c9413a71e7b4498f831e2df7a08e5f33

Hostname: xxx
Storage: /var/lib/systemd/coredump/core.beam\x2esmp.1007.f8abe9473f7e4fea8ba24944e35ce7d9.73873.1640116381000000.zst (present)

Disk Size: 14.6M
Message: Process 73873 (beam.smp) of user 1007 dumped core.

Found module /home/xxx/Software/Erlang/Erlang-24.2/lib/erlang/erts-12.2/bin/beam.smp with build-id: 8cfbf76728dd7399444638f1ba124471181840e7
Found module /home/xxx/Software/Erlang/Erlang-24.2/lib/erlang/lib/wx-2.1.1/priv/erl_gl.so with build-id: 0b96532e586839d3da9afd6e5f23aa76346a0e45

[...]
Stack trace of thread 74039:
#0 0x00007f6e5461a74b __memmove_avx_unaligned_erms (libc.so.6 + 0x16374b)
#1 0x00007f6d8a204428 n/a (iris_dri.so + 0xd12428)
#2 0x00007f6d89733207 n/a (iris_dri.so + 0x241207)
#3 0x00007f6d89733c97 n/a (iris_dri.so + 0x241c97)
#4 0x00007f6d898d8b0d n/a (iris_dri.so + 0x3e6b0d)
#5 0x00007f6d898d8bf2 n/a (iris_dri.so + 0x3e6bf2)
#6 0x00007f6d8b2f241c n/a (/home/xxx/Software/Erlang/Erlang-24.2/lib/erlang/lib/wx-2.1.1/priv/erl_gl.so + 0x5b41c)

[New LWP 74039]
[New LWP 73873]
[...]
Core was generated by ‘/home/xxx/Software/Erlang/Erlang-24.2/lib/erlang/erts-12.2/bin/beam.smp -’.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x00007f6e5461a74b in __memmove_avx_unaligned_erms () from /usr/lib/libc.so.6
[Current thread is 1 (Thread 0x7f6d900aa640 (LWP 74039))]

Then:

(gdb) bt
[...]
#0 0x00007f6e5461a74b in __memmove_avx_unaligned_erms () at /usr/lib/libc.so.6
#1 0x00007f6d8a204428 in () at /usr/lib/dri/iris_dri.so
#2 0x00007f6d89733207 in () at /usr/lib/dri/iris_dri.so
#3 0x00007f6d89733c97 in () at /usr/lib/dri/iris_dri.so
#4 0x00007f6d898d8b0d in () at /usr/lib/dri/iris_dri.so
#5 0x00007f6d898d8bf2 in () at /usr/lib/dri/iris_dri.so
#6 0x00007f6d8b2f241c in ecb_glTexImage2D(ErlNifEnv*, ErlNifPid*, ERL_NIF_TERM*) (env=0x5642f62bdea0, self=0x5642f665e148, argv=0x5642f665e168) at gen/gl_nif.cpp:2844
[...]
#29 0x00007f6d92967188 in wxe_main_loop(void*) (_unused=<optimized out>) at wxe_main.cpp:138

(this example was an Erlang wx/OpenGL-oriented crash)
From there, standard gdb-fu shall be sufficient to give much insight. Once

done, use q to quit.

13

https://sourceware.org/gdb/current/onlinedocs/gdb/

Preparing Adequate USB Keys
Objective

The goal here is, once having purchased a basic yet robust (e.g. with a proper
lid) USB key (preferably from a good brand, bought from a reliable seller in
order to avoid counterfeits), to prepare it efficiently for everyday use.

Often capacity matters a bit, speed not so much, and the best value for
money is met for the mid-range keys of the time.

Conventions, conventions

The name of our key (KEY_NAME) will be Kn, where n is a key counter (e.g.
KEY_NAME=K7).

We will create here two (GPT) partitions on such a key:

• a large, encrypted ("private"), Linux-friendly partition, as the main stor-
age space of interest; based on EXT4 with dm-crypt and LUKS2, ciphered
based on a 256-bit AES algorithm

• a smaller, plain/unencrypted ("public"), Windows-friendly partition, for
convenience (when you have files to transfer yet you do not remember the
passphrase of the previous partition)

The name of a partition (P_NAME) is a disk label, often limited to 11 char-
acters. We choose it as prefixed with the name of the key, followed by either
pub (for public, unencrypted) or encr (for encrypted), then with the partition
number. For example, K3-pub-1 or K11-encr-4.

The name of a filesystem (FS_NAME) of a partition is constrained as well, we
specify it as: KEY_NAME-(pub|encr)-PHYSICAL_SIZE[-PARTITION_NUMBER], the
partition number being useful to distinguish between any otherwise identical
partitions of a given key. For instance K7-pub-2GB and K7-encr-14GB-4.

Any statically-defined mount point shall bear the same name as the associ-
ated filesystem: MOUNTPOINT=/mnt/${FS_NAME}. For example MOUNTPOINT="/mnt/K7-pub-2GB".

Targeting the Right Device

Each key shall be registered in one’s repository, and one shall be careful not to
format one’s local hard disk instead of a key.

To identify for sure such a key, run lsblk --fs just before plugging it in,
and just after, so that the difference can be easily spotted.

The device name and size should be checked.
For an increased security, environment variables will be associated here to

such a key, for example with: export KEY_DEV=/dev/sdz.
Its characteristics can be recorded in one’s repository:

$ fdisk -l ${KEY_DEV}
$ parted ${KEY_DEV} print

14

Creating the Partitions

As root:

$ export KEY_NAME="K7"
$ fdisk -l
$ export KEY_DEV=/dev/sdz
$ fdisk ${KEY_DEV}

Then:

• print the partition table : (p)

• delete if necessary any previously existing partition(s): (d) for each of
them

• create a GPT disklabel: (g) rather than a MBR one (i.e. not "dos" (o))

• create each partition (first the encrypted one(s), to favor their use):

– creation thanks to (n)
– size (e.g."+55G")
– type (e.g. "Linux filesystem", i.e. 20, or "Microsoft basic data", i.e.

11)
– partition name (with GPT: switch to expert mode (x), then (n), then

a name like K7-encr-part); back to the main menu (r)

• check: (p), (F), (v)

• write: (w)

So that the kernel updates its partition table, it may be necessary to unplug
and plug again the key.

All information (obtained in expert mode) regarding the new partitions may
be stored in one’s repository.

Erasing a Target Partition

If feeling paranoid about the previous content and having quite a lot of time
ahead, a low-level erasure of a partition can be performed.

For example:

$ export PUB_DEV_NUM=1
$ export PUB_DEV="${KEY_DEV}${PUB_DEV_NUM}"; echo "PUB_DEV: ${PUB_DEV}"

$ fdisk -l ${PUB_DEV}
$ parted ${PUB_DEV} print

Remove the echo after serious verification:
$ echo dd bs=256K if=/dev/urandom of=${PUB_DEV}
(wait for *very* long)
dd: error writing ’/dev/sdz1’: No space left on device
(still blocks for very long, despite any CTRL-C; just wait)
16385+0 records in
16384+0 records out
2147483648 bytes (2.1 GB, 2.0 GiB) copied, 241.353 s, 8.9 MB/s

15

Creating Plain, Unencrypted Partitions

Some devices (e.g. printers) may be confused should there be multiple partitions,
or some with non-FAT or encrypted filesystems. This may be a reason to create
a single, overall FAT partition.

Formatting a Plain Partition As FAT32 :

$ export PART_NUM=2
$ export PART_SIZE="2GB"

$ export FS_NAME="${KEY_NAME}-pub-${PART_NUM}-${PART_SIZE}"
Or if a single partition is of that type:
$ export FS_NAME="${KEY_NAME}-pub-${PART_SIZE}"

$ echo ${FS_NAME}
$ export PUB_DEV="${KEY_DEV}${PART_NUM}"
Remove the echo after serious verification:
$ echo mkdosfs -F 32 -n ${FS_NAME} ${PUB_DEV}
mkfs.fat 4.2 (2021-01-31)
mkfs.fat: Warning: lowercase labels might not work properly on some systems

Finalising and Testing a Plain Partition We take this opportunity to,
after the previous section, create its own mount point (typically to be referenced
in /etc/fstab):

$ export MOUNT_POINT=/mnt/${FS_NAME}; mkdir ${MOUNT_POINT} && mount ${PUB_DEV} ${MOUNT_POINT}

Should be not needed:
$ chown -R YOUR_USER:YOUR_GROUP ${MOUNT_POINT}

$ touch ${MOUNT_POINT}/WELCOME_TO_${KEY_NAME}_PUBLIC_${PART_NUM}_${PART_SIZE}_SPACE && ls -l ${MOUNT_POINT}

Or if a single partition is of that type:
$ touch ${MOUNT_POINT}/WELCOME_TO_${KEY_NAME}_PUBLIC_${PART_SIZE}_SPACE && ls -l ${MOUNT_POINT}

If really wanting to register extraneous information:

$ mount | grep ${MOUNT_POINT}
/dev/sdb2 on /mnt/K5-pub-2GB type vfat (rw,relatime,fmask=0002,dmask=0002,allow_utime=0020,codepage=437,iocharset=ascii,shortname=mixed,utf8,errors=remount-ro)

$ df ${MOUNT_POINT}
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sdb2 2774720 4 2774716 1% /mnt/K5-pub-2GB

$ blkid ${PUB_DEV}
/dev/sdb2: LABEL_FATBOOT="K5-pub-2GB" LABEL="K5-pub-2GB" UUID="8C2C-1849" BLOCK_SIZE="512" TYPE="vfat" PARTLABEL="K5-pub-part" PARTUUID="955a970a-9920-c448-ada1-3f523d6fded3"

$ lsblk --fs ${PUB_DEV}
NAME FSTYPE FSVER LABEL UUID FSAVAIL FSUSE% MOUNTPOINTS

16

sdb2 vfat FAT32 K5-pub-2GB 8C2C-1849 2.6G 0% /mnt/K5-pub-2GB

$ parted ${PUB_DEV} print
Model: Unknown (unknown)
Disk /dev/sdb2: 2847MB
Sector size (logical/physical): 512B/512B
Partition Table: loop
Disk Flags:

Number Start End Size File system Flags
1 0.00B 2847MB 2847MB fat32

$ umount ${MOUNT_POINT}

Creating Encrypted Partitions

After Partitioning Such storage space is of course to be partitioned first like
the plain ones (see Creating the Partitions), and can similarly be erased at a
low level first (see Erasing a Target Partition).

For example we may end up with:

$ export ENCR_DEV_NUM=1

$ export ENCR_DEV="${KEY_DEV}${ENCR_DEV_NUM}"; echo "ENCR_DEV: ${ENCR_DEV}"
ENCR_DEV=/dev/sdb1

$ fdisk -l ${ENCR_DEV}
Disk /dev/sdb1: 12 GiB, 12884901888 bytes, 25165824 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

$ parted ${ENCR_DEV} print

$ export PART_SIZE="12GB"

Creating an encrypted LUKS container We used to favor LUKS1 over
LUKS2 for a better compatibility with ancient Linuces, yet it is no longer rele-
vant, LUKS2 is widespread now.

In order to create such a container, there are many options to choose from;
here are the ones that we prefer:

Remove the echo after serious verification (enter YES then the main, daily
passphrase to unlock that container):
#
$ echo cryptsetup --hash sha512 -c aes-xts-plain --key-size 512 luksFormat ${ENCR_DEV}
WARNING!
========
This will overwrite data on /dev/sdb1 irrevocably.

17

https://wiki.archlinux.org/title/Dm-crypt/Device_encryption#Encryption_options_for_LUKS_mode

Are you sure? (Type ’yes’ in capital letters): YES
Enter passphrase for /dev/sdb1:
Verify passphrase:

We strongly advise to add a second, "rescue" passphrase (longer, more diffi-
cult than the previous daily one, and potentially common to at least some keys),
as a last chance:

Remove the echo after serious verification (enter the previous passphrase, then
the rescue one):
#
$ echo cryptsetup luksAddKey ${ENCR_DEV}
Enter any existing passphrase:
Enter new passphrase for key slot:
Verify passphrase:

Let’s introduce then more variables:

$ export ENCR_DESIGNATOR="${KEY_NAME}-encr-${ENCR_DEV_NUM}-${PART_SIZE}"
- OR -
$ export ENCR_DESIGNATOR="${KEY_NAME}-encr-${PART_SIZE}"

$ echo "ENCR_DESIGNATOR=${ENCR_DESIGNATOR}"
ENCR_DESIGNATOR=K5-encr-12GB

Now we unlock the LUKS container so that we can create an EXT4 partition
in it.

A -fs suffix would not be very relevant (this is the name that will be used
by to automounter):

$ export ENCR_FS_NAME="${ENCR_DESIGNATOR}"

Remove the echo after serious verification:
$ echo cryptsetup config ${ENCR_DEV} --label ${ENCR_FS_NAME}
cryptsetup config /dev/sdb1 --label K5-encr-12GB
$ cryptsetup config ${ENCR_DEV} --label ${ENCR_FS_NAME}

$ export DM_NAME="my-${ENCR_DESIGNATOR}"

Enter either of the two aforementioned passphrases:
$ cryptsetup luksOpen ${ENCR_DEV} ${DM_NAME}
Enter passphrase for /dev/sdb1:

Creating the In-Container EXT4 Filesystem Deactivating journaling
(with the -O ^has_journal option) could increase a bit the lifespan of the
key, but would weaken its filesystem, whereas USB keys may be (unfortunately)
unplugged while being still mounted; so we prefer keeping the journaling:

18

Remove the echo after serious verification:
$ echo mkfs.ext4 /dev/mapper/${DM_NAME} -L ${ENCR_FS_NAME} -E discard
mkfs.ext4 /dev/mapper/my-K5-encr-12GB -L K5-encr-12GB -E discard

$ mkfs.ext4 /dev/mapper/${DM_NAME} -L ${ENCR_FS_NAME} -E discard
mke2fs 1.47.0 (5-Feb-2023)
Creating filesystem with 3141632 4k blocks and 786432 inodes
Filesystem UUID: 92c44f73-8614-44f9-a03c-cfd718aecb8e
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

So no more need here for tune2fs -O ^has_journal /dev/mapper/${DM_NAME}.
One may still check the resulting settings with tune2fs -l /dev/mapper/${DM_NAME}.

Declaring keys in /etc/fstab and in /etc/crypttab is not necessary; more-
over some care would be needed in order to ensure that the automounter would
not freeze at the next reboot, expecting such a key to be available.

Finalising and Testing an Encrypted Partition Here also one could take
this opportunity to, after the previous section, create a dedicated mount point
(see just above for a warning about referencing it through /etc/fstab and/or
/etc/crypttab).

We consider that the previous LUKS container is still opened (otherwise:
cryptsetup luksOpen ${ENCR_DEV} ${DM_NAME}).

Then:

$ export MOUNT_POINT=/mnt/${ENCR_DESIGNATOR}; echo "MOUNT_POINT = $MOUNT_POINT"
MOUNT_POINT = /mnt/K5-encr-12GB

$ mkdir ${MOUNT_POINT}

For example DM_NAME=/dev/mapper/my-K5-encr-12GB:
$ mount /dev/mapper/${DM_NAME} ${MOUNT_POINT}

$ touch ${MOUNT_POINT}/WELCOME_TO_${KEY_NAME}_ENCRYPTED_${PART_NUM}_${PART_SIZE}_SPACE && ls -l ${MOUNT_POINT}
or

$ touch ${MOUNT_POINT}/WELCOME_TO_${KEY_NAME}_ENCRYPTED_${PART_SIZE}_SPACE && ls -l ${MOUNT_POINT}
total 16
drwx------ 2 root root 16384 Apr 22 12:41 lost+found
-rw-rw-r-- 1 root root 0 Apr 22 16:14 WELCOME_TO_K5_ENCRYPTED_12GB_SPACE

Should be needed (otherwise can be mounted yet not written by one’s normal user):
$ chown -R YOUR_USER:YOUR_GROUP ${MOUNT_POINT}

Record some information if wanted:

19

$ mount | grep ${MOUNT_POINT}
/dev/mapper/my-K5-encr-12GB on /mnt/K5-encr-12GB type ext4 (rw,relatime)

$ blkid ${ENCR_DEV}
/dev/sdb1: UUID="f00def37-529a-4400-aa8c-c7a36589c152" LABEL="K5-encr-12GB" TYPE="crypto_LUKS" PARTLABEL="K5-encr-part" PARTUUID="b4b72946-f1d1-1c45-976d-3bd389d23752"

$ lsblk --fs ${ENCR_DEV}
NAME FSTYPE FSVER LABEL UUID FSAVAIL FSUSE% MOUNTPOINTS
sdb1 crypto_LUKS 2 K5-encr-12GB f00def37-529a-4400-aa8c-c7a36589c152
my-K5-encr-12GB ext4 1.0 K5-encr-12GB 92c45f73-8614-44f9-a03c-cfd718aecb8e 11.1G 0% /mnt/K5-encr-12GB

$ parted ${ENCR_DEV} print
Error: /dev/sdb1: unrecognised disk label
Model: Unknown (unknown)
Disk /dev/sdb1: 12.9GB
Sector size (logical/physical): 512B/512B
Partition Table: unknown
Disk Flags:

$ df ${MOUNT_POINT}
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/my-K5-encr-12GB 12262536 2072 11615756 1% /mnt/K5-encr-12GB

Finally:

$ umount ${MOUNT_POINT}
$ cryptsetup close ${DM_NAME}

That’s it! You should end up with a basic, inexpensive USB key - yet offering
at least two satisfying partitions, one public (unencrypted), one adequately
encrypted.

GRUB Ate My Distro Again: Fixing the Bootloader
So you tried recklessly to add some kernel parameters - presumably to prevent
your laptop from freezing regularly for no apparent reason - and GRUB managed
once again to replace a bootloader that used to work flawlessly with one that
just cycles to the BIOS?

Here are a few guidelines (on Arch Linux, with UEFI and GPT - rather
than any MBR) that could be useful, knowing that considerably more complete
information can be found in this page.

Prerequisites

At least the following packages will be needed (anyway they are likely to be
already available, either from a real install or from a rescue medium): grub,
efibootmgr and os-prober.

You will also need a bootable (most probably removable) install/rescue
medium, typically an USB stick whose content can be erased. Either you have
access to another computer (Linux or not), or you have a multiboot and, after
a smart journey in the BIOS menus, you will be able to nevertheless launch

20

https://wiki.archlinux.org/title/GRUB

a Windows instance (generally GRUB just concentrates on wreaking havoc on
unfortunate Linuces, rather than doing the same to Windows installations).

If having only a Windows instance at hand, one may just follow these guide-
lines, which mostly boil down to downloading and installing the (free software)
Win32 Disk Imager tool, grabbing also a relevant ISO (e.g. archlinux-2023.04.01-x86_64.iso
at the time of this writing) and writing in on said USB stick.

Running a Live Rescue Arch

Once having a proper rescue medium, ensure that it is inserted, and reboot your
GRUB-affected host; possibly the BIOS configuration will have to be updated
so that the host can boot on that medium.

Once done, you should end up with a root shell - albeit running from a live,
rescue Arch Linux, whereas the one that you want to fix is of course the one of
your host.

Preparing the chroot

First enforce any essential setting, such as loadkeys fr if you have a French
keyboard. Then locate the /boot partition of the host. It may either be directly
in the partition corresponding to the root / tree or, as per our conventions, in
a separate one (so that all other partitions can be appropriately encrypted).
For that, fdisk -l (and possibly lsblk as well) shall help finding out such a
partition; for instance:

$ fdisk -l
Device Start End Sectors Size Type
/dev/nvme0n1p1 2048 1226751 1224704 598M EFI System
/dev/nvme0n1p2 1226752 1259519 32768 16M Microsoft reserved
/dev/nvme0n1p3 1259520 313274682 312015163 148.8G Microsoft basic data
/dev/nvme0n1p4 313276416 314570751 1294336 632M Windows recovery environment
/dev/nvme0n1p5 314572800 838860799 524288000 250G Microsoft basic data
/dev/nvme0n1p6 838860800 855638015 16777216 8G Linux swap
/dev/nvme0n1p7 855638016 1056964607 201326592 96G Linux filesystem
/dev/nvme0n1p8 1056964608 4000797326 2943832719 1.4T Linux filesystem

Here, one can guess that nvme0n1p1 is /boot (because of the EFI type, and
the size), that nvme0n1p7 is / and nvme0n1p8 is /home.

Managing the chroot

A relevant chroot shall be performed, once all appropriate trees have been
mounted; we do not need /home (on the contrary, it is safer if it remains locked
and not even mounted), but we need the right /boot (the one on disk and that
contains the previous bootloader elements) to be mounted, instead of the empty
one that would be inherited by a mere mounting of the / root. So:

$ cd /mnt

Intermediary directory usually useless but clearer:
$ mkdir my_chroot_tree

21

https://wiki.archlinux.org/title/USB_flash_installation_medium#Using_win32diskimager
https://wiki.archlinux.org/title/USB_flash_installation_medium#Using_win32diskimager
https://sourceforge.net/projects/win32diskimager/files/latest/download
https://archlinux.org/download/

Mount the whole system tree, "/":
$ mount /dev/nvme0n1p7 my_chroot_tree

Take care of our separate "/boot" as well:
$ ls my_chroot_tree/boot
(empty)

$ mount /dev/nvme0n1p1 my_chroot_tree/boot
$ ls my_chroot_tree/boot
. EFI initramfs-linux-fallback.img initramfs-linux-lts-fallback.img
intel-ucode.img vmlinuz-linux .. grub initramfs-linux.img
initramfs-linux-lts.img ’System Volume Information’ vmlinuz-linux-lts

Switch to the actual host Arch system:
$ arch-chroot my_chroot_tree

(Re)Installing GRUB

As we understand it, installing GRUB (i.e. copying its relevant file elements
in a proper location in /boot) and configuring it can be done in any order; we
prefer anyway installing it first, with:

Note that the ’EFI’ directory is not directly specified here, only
the /boot mount point:
$ grub-install --target=x86_64-efi --efi-directory=/boot --bootloader-id=MY_GRUB

Here GRUB is just installed - it is not ready to be used: do not reboot,
configure it first, as shown just below.

Configuring GRUB

Note
Configuring GRUB means generating a settings file whose syntax may
be more recent than the one supported by any already-installed GRUB -
which would thus be bound to fail at boot. So any configuration update
of GRUB shall be done together with the update of its installation.

Now is the right time to update one’s /etc/default/grub, which will be
used to setup the actual one, /boot/grub/grub.cfg.

If os-prober is especially useful to auto-detect any Windows installation,
we could see that it was not working from a chroot (and thus it has to be done
later, directly from the final Arch host).

Selecting the Default Boot Menu Entry Knowing that LTS kernels will
be sorted first and thus will be selected by default, one may instead choose
one’s preferred default - typically the latest stable kernel (instead of any LTS
one, used as a fallback).

22

To do so, the target entry can be identified thanks to grep "menuentry
’" /boot/grub/grub.cfg (for example ’Arch Linux, with Linux linux’).
Then, in /etc/default/grub, it can be assigned to GRUB_DEFAULT (e.g. GRUB_DEFAULT="Arch
Linux, with Linux linux") - which is safer / more stable than specifying an
entry index.

Other Settings We also recommend specifying:

So that the first entry is the stable kernel, not the LTS one:
GRUB_TOP_LEVEL="/boot/vmlinuz-linux"

Longer preferred:
GRUB_TIMEOUT=10

Customise your GRUB_DISTRIBUTOR

No submenu hiding entries wanted:
GRUB_DISABLE_SUBMENU=y

Generating the GRUB Configuration File The last step is to generate
and install the corresponding actual GRUB configuration file:

$ grub-mkconfig -o /boot/grub/grub.cfg

Finally

Rebooting and selecting a right entry menu should result in a restored boot
proceeding as normal.

Moreover, now that not being in a chroot, os-prober should be able to
pick up any other system (especially Windows installations) and declare them
appropriately.

This should be just a matter of defining/uncommenting GRUB_DISABLE_OS_PROBER=false,
and running grub-mkconfig -o /boot/grub/grub.cfg again (and hope for the
best).

Other Filesystem-related Issues
Word of wisdom: perform backups. Regularly. Safely stored, sheltered from
disasters like burglars, floods, cats, fires, etc.

Target is busy

Umounting may fail with umount: /var/foobar: target is busy. Finding
the culprit can be done with:

$ lsof /var/foobar
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 275648 root cwd DIR 254,1 20480 45236687 /var/foobar/www/Foo

23

Failed I/O Operations

Some operations (even a touch done by root) may fail, reporting Read-only
file system; systemd-fsck may also report Structure needs cleaning.

Check with mount that a given filesystem/partition is (still) in the expected
state:

For example:
/dev/mapper/foobar on /var/foobar type ext4 (rw,relatime,data=ordered)

may have become:
/dev/mapper/foobar on /var/foobar type ext4 (ro,relatime,errors=continue,data=ordered)

Best option here is to unmount, make a sector-level backup of the disk, and
then check it. Probably that the disk already failed and you will have to resort
to revert to a former backup.

Checking a Disk

This can be done with e2fsck once the filesystem is unmounted, like in: e2fsck
-cDp /dev/mapper/foobar, with:

• -c: use badblocks to do a read-only scan of the device

• -D: optimize directories in the filesystem

• -p: automatically repair ("preen") the file system

If having errors like:

e2fsck: Input/output error while trying to open /dev/mapper/foobar‘‘

or:

The superblock could not be read or does not describe a valid
ext2/ext3/ext4 filesystem [...]

then, unless you are trying to check an encrypted partition (e.g. not having
cryptsetup-opened a LUKS one) or a superblock copy is enough, prospects are
grim.

Try for example fdisk / gdisk / cgdisk, parted, smartctl --all -T
verypermissive, badblocks -o ~/scan-result.txt -sv (for which errors are
counted as NumberOfReadErrors / NumberOfWriteErrors / NumberOfCorrup-
tionErrors) - yet your disk is maybe already unrecoverable.

Quick Topics
Relying on Stable and User-Friendly Names for Network Interfaces

Tired of having your network interfaces be named enp0s31f6, or wlp4s0 then
wlan0, to mix them up afterwards and to have to update their naming in various
places (e.g. for netctl, iptables)?

Time is to rename them once for all; and we prefer doing so with thanks to
a udev rule.

To change the name of a given network interface (e.g. from enp0s31f6 to
lanfoobar, fiber1 or, here, eth0), its MAC address must be obtained first:

24

https://wiki.archlinux.org/title/Network_configuration#Change_interface_name
https://wiki.archlinux.org/title/udev

$ ip link show enp0s31f6
2: enp0s31f6: <BROADCAST,MULTICAST> mtu 1500 qdisc fq_codel state DOWN mode DEFAULT group default qlen 1000
link/ether 54:e1:cd:f5:a4:f8 brd ff:ff:ff:ff:ff:ff

Then a corresponding entry (the MAC address must be in a lowercase) may
be added (possibly among others) in a file named, for example, /etc/udev/rules.d/10-network.rules:

SUBSYSTEM=="net", ACTION=="add", ATTR{address}=="54:e1:cd:f5:a4:f8", NAME="eth0"

Then, provided that the target interface is down4 , the new rule can be
triggered for a test, with:

$ udevadm trigger --verbose --subsystem-match=net --action=add

Use ip link to check that the new names are indeed applied.
One should then hunt down under the /etc/systemd tree (especially in

/etc/systemd/system/multi-user.target.wants/) all files whose name and/or
content include the former interface name, in order to update them with the new
name and try, after a systemctl daemon-reload, to (re)start that interface.

Installing Wine

Install it, once enabling multilib has been done, with: pacman -S wine.
When run, this may lead wine-mono to be auto-installed.
The pseudo-Windows filesystem is then located mostly in ~/.wine/drive_c.

Overcoming Invalid PGP Signatures in Pacman Packages

This happens regularly, especially when updating a symptom being: File /var/cache/pacman/pkg/xxx.pkg.tar.zst
is corrupted (invalid or corrupted package (PGP signature)).

Solution: pacman -S archlinux-keyring is at least often enough. Other-
wise pacman-key --populate archlinux, or changing mirror might help.

Protecting Files and Directories

Beyond the basic chown / chmod commands (e.g. chmod 400 to have it read-
only for its owner only), using chattr as well shall be considered for the most
sensitive filesystem elements (like the ones related to ~/.ssh).

Notably, so that a file becomes immutable (even for root), one may use
chattr +i MY_FILE.

Use chattr -i MY_FILE to clear that immutability, and lsattr to check it.

Converting Data Formats

• to convert multimedia files, ffmpeg is very convenient; for example to
convert an AIF file into a WAV one: ffmpeg -i sound.aif sound.wav

• to read *.pck resource file, the Dragon UnPACKer (Windows) open source
tool can be used

See also Ceylan-Hull’s multimedia-related section.

4Actually it does not even seem necessary.

25

https://www.elberethzone.net/dragon-unpacker.html
https://hull.esperide.org/#multimedia-related

Adding a Locale

On some hosts, issues in terms of a lacking locales may be reported, like in the
following:

bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8)

This can be fixed by uncommenting the corresponding locale (en_US.UTF-8
here) in /etc/locale.gen, and then regenerating the system locales by running
(as root) locale-gen:

$ locale-gen
Generating locales (this might take a while)...
en_US.UTF-8... done
fr_FR.UTF-8... done
fr_FR.ISO-8859-15@euro... done

Generation complete.

Performing Searches and Replacements

Searches: to be made with grep To search for a set of patterns, separate
them by an (escaped) pipe; for example: grep ’hello\|goodbye\|farewell’
Foobar.java.

Replacements: to be made with sed

• multiple operations (typically replacements) can be made in a row by
combining them with ";"; for example to uppercase only a set of letters:
echo "aabbccddee" | sed ’s|b|B|g;s|d|D|g’ yields aaBBccDDee

• to perform in-place replacements in a file: sed -i ’s|MY_TAG|142|g’
my_file.txt (if a suffix is specified, backups may be made)

Common to grep and sed With grep and sed, [[:space:]] and \s are the
same, they will both match any whitespace character spaces, tabs, etc.

XFCE4 configuration

Settings of Interest Good window managers are Galaxy and Microdeck3.

Applying a XFCE4 configuration to a different user The objective is
to duplicate the configuration of the user_a desktop to the user_b one, for
example if user_b is used to test an untrusted application.

A key point is to ensure that at least user_b has no ongoing graphical
session (otherwise any new configuration may be overwritten with an older one
at logout).

Then, typically as root:

$ rm -rf /home/user_b/.config/{xfce4,Thunar} /home/user_b/.local/share/xfce4
$ cp -rf /home/user_a/.config/{xfce4,Thunar} /home/user_b/.config
$ cp -rf /home/user_a/.local/share/xfce4 /home/user_b/.local/share
$ chmod -R /home/user_b/{.config,.local} user_b:users

26

Then a key point is to fully reset XFCE4. Unlogging and/or killall -HUP
xfdesktop may not be sufficient. As a last resort, rebooting shall work.

Selecting a per-user wallpaper may help distinguishing users.

Solving PulseAudio Issues

As your current user:

$ /bin/rm -rf /tmp/pulse* ~/.pulse* ~/.config/pulse
$ pulseaudio -k ; pulseaudio --start

If not sufficient, check /etc/pulse/default.pa and run as a normal user
pulseaudio -vvv, looking for errors (e.g. pulseaudio -vvv 2>&1 | grep ’^E:
’).

The playback hardware devices may be listed with aplay -l.
One may run pacmd list-cards to obtain the information (e.g. symbolic

and profile names) to specify set-card-profile entries (useful to set proper
defaults and switch off unwanted elements).

See also these Arch guidelines.
As last resort (rarely needed), as root, one may reinstall it: pacman -Sy

pulseaudio and reboot.

Using Visual Studio Code

Visual Studio Code (a.k.a. VS Code; not to be confused with Visual Studio
itself) is a popular free software (MIT licence) source-code multi-platform editor,
developed by Microsoft.

It supports many languages and features through extensions.

Installing It can be installed on Arch thanks to pacman -Sy code.
If not installed thanks to one’s distribution, the binaries of Visual Studio

Code can be directly downloaded (through an archive named code-stable-x64-XXX.tar.gz)
that may be extracted in, say, ~/Software/Vs-Code.

Another option is to download and use VSCodium, a version of it without
Microsoft branding/telemetry/licensing.

One may then put ~/Software/Vs-Code/VSCode-linux-x64/bin in one’s
PATH so that VS Code can be run thanks to: code.

Updating Prior to running any VS Code, circumvent any proxy that is in the
way.

Then launch VS Code, select in the Help menu first Check for updates then,
if any is found, Download Available Update which, from GNU/Linux without
relying on a package manager, should point to this download link.

Then the dowloaded file (e.g. ~/Downloads/code-stable-x64-1718139773.tar.gz)
shall be moved to ~/Software/VS-Code and extracted (tar xvf code-stable-x64-1718139773.tar.gz)
there, creating or updating a VSCode-linux-x64 tree.

Executing One may run code, or rely on our run-vscode.sh script (notably
to accommodate for any proxy).

27

https://wiki.archlinux.org/title/PulseAudio/Examples
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/docs/?dv=linux64downloaded
https://github.com/VSCodium/vscodium/releases
https://code.visualstudio.com/docs/?dv=linux64
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/run-vscode.sh

Configuring

Fixing whitespaces In File -> Preferences -> Settings, preferably
in the User tab (rather than only in the Workspace one), search and enable
the Files: Trim Trailing WhiteSpace option (or select in the Text Editor
category the Files subcategory and hunt that option down).

Ignoring files Some generated files (e.g. *.beam ones) should not be
shown in the Explorer panel (usually on the left of the screen).

In the settings screen (File > Preferences > Settings), in Files, one
may then add: Exclude **/*.beam to exclude them, regardless of the place
in the filesystem tree.

General-purpose extensions They do not apply to specific language per
se.

For makefiles, one may rely on the Makefile Tools Microsoft extension.

Fixing Problems Use Ctrl-Shift-M to display in the corresponding panel
(generally on the bottom-right of the screen) the problems reported by the
enabled extensions.

Supported Languages We recommend using the following extensions for:

• Python: the Microsoft Python extension, the Microsoft Python Debug-
ger extension and the Microsoft Pylance extension; possibly also vscode-
micromamba

Using E-mail Clients

Over time we were preferring Evolution to Thunderbird, notably regarding its
far better OpenPGP support. Yet, at least for some IMAP servers (e.g. the ones
of Mailo), errors (like: Error copying messages: Error) constantly happen-
ing (despite many attempts of configuration changes) and being reported ruined
its use for us5, so we switched back to Thunderbird.

• for Thunderbird:

– the message filters can be copied as a whole from a computer to an-
other, knowing that with IMAP servers the emails and their folder
structure should be readily available from all clients; transferring
filters is as simple as copying, whereas Thunderbird instances are
closed, the relevant msgFilterRules.dat file (located typically in a
generated directly like ~/.thunderbird/6r77gatw.default-release/ImapMail/YOUR_IMAP_SERVER/msgFilterRules.dat)

– we recommend using the DKIM Verifier add-on, that we found much
useful to better detect spoofing attempts; it can be configured to
display colored DKIM statuses for the sender of each email, which is
very convenient

5Moreover the fixed character-wrapping of Evolution is rather surprising and unfortunate.

28

https://marketplace.visualstudio.com/items?itemName=ms-vscode.makefile-tools&ssr=false#overview
https://code.visualstudio.com/docs/languages/python
https://marketplace.visualstudio.com/items?itemName=ms-python.debugpy
https://marketplace.visualstudio.com/items?itemName=ms-python.debugpy
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://github.com/mamba-org/vscode-micromamba
https://github.com/mamba-org/vscode-micromamba
https://help.gnome.org/users/evolution/stable/index.html
https://www.thunderbird.net/
Cybersecurity.html#securing-thanks-to-openpgp
https://www.mailo.com/
https://addons.thunderbird.net/en-us/thunderbird/addon/dkim-verifier/

• for Evolution: on Arch Linux, consider installing the evolution-bogofilter
and/or evolution-spamassassin packages, otherwise spams (junk mails)
do not seem to be managed properly (or at all)

See also Ceylan-Hull’s email.sh and archive-emails.sh scripts.

Sandboxing an Application

Sometimes it is harder to trust an application, for example because it had to be
installed as an AppImage.

Sandboxing reduces the risk of security breaches by restricting the running
environment of untrusted applications: they can be prevented from accessing to
filesystems, to the network, etc.

A well-known sandboxing tool is firejail. It can be installed on Arch Linux
with pacman -Sy firejail. Then an untrusted executable my_exec can simply
be run with: firejail my_exec.

Recording a Screencast

We rely on the impressive, feature-rich, free software SimpleScreenRecorder
(pacman -Sy simplescreenrecorder).

This tool is run as simplescreenrecorder and offers many options and
encoding choices; it is able to record OpenGL applications6 and also the audio.

Note that, as notified by the tool, the MP4 container type will produce
unreadable files if the recording is interrupted (then the MKV container shall
be preferred).

See also this comparison of screencasting software.

Specifying iterations with Bash

With Bash, as an alternative to $(seq N), variables may be iterated (e.g. to
select filenames) based on:

• a list: for i in images-{1,4,9}-of-cats.jpeg; do ...

• a range: ls images-{1..7}-of-cats.jpeg, possibly with an increment:
ls images-{1..7..2}-of-cats.jpeg

Shell Auto-completing the available make targets

If able to do so, just install a bash-completion package, available on most
distributions (including Arch Linux).

Otherwise, one may add to one’s shell profile / configuration (e.g. ~/.bashrc):

complete -W "\‘grep -oE ’^[a-zA-Z0-9_.-]+:([^=]|$)’ *akefile | sed ’s/[^a-zA-Z0-9_.-]*$//’ 2>/dev/null\‘" make

6In our case it was sufficient to select Record a fixed rectangle and Select window
(which happened to be the one of an OpenGL application); it seemed a better option than
selecting Record OpenGL, as afterwards no recording could be done due to Could not get the
size of the OpenGL application. (maybe this could be alleviated by entering adequate
settings).

29

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/email.sh/
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/archive-emails.sh
https://en.wikipedia.org/wiki/AppImage
https://github.com/netblue30/firejail
https://wiki.archlinux.org/title/firejail
https://en.wikipedia.org/wiki/SimpleScreenRecorder
https://en.wikipedia.org/wiki/Comparison_of_screencasting_software

Mini Shell Cheat Sheet

For the basic /bin/sh shell (Bash being a superset thereof).

Switch-like Statement Example:

case "${extension}" in

"erl"|"hrl")
reformat_erlang_source_file "${target_file}"
;;

"foo")
reformat_foo "${target_file}"
;;

*)
do_something
;;

esac

Testing whether a Path is Absolute For almost all shells (including /bin/sh):

case $DIR in

/*) echo "absolute path" ;;
*) echo "relative path" ;;

esac

Testing whether a Filesystem Element is a Regular File or a Symlink
(as using symbolic links is often convenient)

Testing if a filesystem element is a symlink:

if [-L "${elem}"]; then
elem is a (possibly dead) symlink
...

fi

Testing also whether the element pointed to exists (as a file, directory, sym-
link in turn, etc.):

if [-L "${elem}"] && [-e "${elem}"]; then
elem is a non-dead symlink
...

fi

Testing whether a given file element is either a regular file or a non-dead
symlink is as simple as:

30

if [-f "${elem}"]; then
elem is a file
...

fi

No-Op In sh and all, use :, typically to fill (at least temporarily) an otherwise
empty control branch with a no-operation (do nothing) statement, like in:

if SOME_COND; then
...

else
:

fi

Mini GNU sed Cheat Sheet

To substitute in-place a line starting by a prefix with another:

$ sed -i "s|^foobar.version=.*$|foobar.version=${MY_VERSION}|1"

One may also refer to this cheat sheet.

Mounting Manually crypttab-declared Partitions

Let’s suppose such a partition (here a LUKS-encrypted one) is declared, in
/etc/crypttab, as:

my-encrypted-nvme-storage UUID=a46879cf-xxx luks,timeout=10,fido2-device=auto

and then in /etc/fstab, as:

/dev/mapper/my-encrypted-nvme-storage /var/foobar ext4 rw,relatime,data=ordered,nofail 0 2

Such partition is expected to be mounted at boot time, but here was closed
for any reason.

One can inquire about it thanks to:

$ SERVICE="systemd-cryptsetup@my\\x2dencrypted\\x2dnvme\\x2dstorage.service"
$ systemctl status "$SERVICE"
$ journalctl -xeu "$SERVICE"
$ cat "/run/systemd/generator/$SERVICE"

Mounting it back is "as simple" as executing: systemctl start /var/foobar.
See also this section for related details.

Recommended Tooling

The tools are designated according to their Arch package name.
See also our e script (for edit) and our v script (for view), which run the

right (available) tool that corresponds to the file extension of its argument.

31

https://quickref.me/sed.html
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/e
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/v

Editors For content of type:

• bitmap: gimp; note that fonts are now searched in /usr/share/gimp/3.0/fonts
rather than in /usr/share/fonts; use Windows -> Dockable Dialogs
-> Fonts to be able, thanks to the circle arrow, to refresh (reload) the
available fonts

• vector: inkscape

• vector font (like TTF): preferring fontforge to birdfont, yet when load-
ing then saving a correct font, both of them were unable to generate a font
that could be loaded by gimp afterwards...; moreover the latter will not
update its initial graphical font content unless its window is moved once

Other User Settings

See our preferences for Startpage; it can be set as homepage.

Tool-Specific Shortcuts

Listing here the main keyboard shortcuts of interest for a few base tools.

For less Mix of vi / more conventions, in order to:

• forward-search for the N-th line containing the pattern (N defaults to
1): /pattern; use ?/pattern to backward-search

• repeat previous search: n:

• invoke an editor on the current file being viewed: v

• go to next file: :n; for the previous one: :p

• help: h

• quit: q

For mpv

• pause / unpause the current playback: <Space>

• decrease the volume: /; increase it: *; mute: m

• go backward / forward in the current playback, by steps of:

– 5 seconds: Left / Right arrow keys

– 1 minute: Down / Up arrow keys

• jump to the next playback: <Enter> or <Escape>

• stop all playbacks: <Ctrl-C>

• display temporarily durations: o (On-Screen Display), i.e. elapsed,
elapsed / total, etc.

32

https://www.startpage.com/do/mypage.pl?prfe=cd347822749aab26ebcc5b5e5d0352b578a0f37dc831f791974bb7f9549e7d5c2614650b7157b6f29bccdcb6675b437eeee32a5a5f37686b01ea56658d241d1925959ace1973900c97547972ffa464fd80e1cb6a
https://www.startpage.com

• toggle fullscreen: f

• double / halve the playback speed: { / } (Backspace to reset it)

• take a screenshot: s (notably if using our v script, as the -vf screenshot
command-line option must have been specified); then a mpv-shot0001.jpg
file will be silently created in the directory whence mplayer was launched,
next screenshot will be mpv-shot0002.jpg, etc.

• quit: q

For mplayer

• pause/unpause the current playback: <space>

• decrease the volume: /; to increase it: *

• go backward/forward in the current playback: left and right arrow
keys

• jump to next playback: <Enter> or <Escape>

• stop all playbacks: <CTRL-C>

• display durations: o to toggle OSD (On-Screen Display), i.e. elapsed,
elapsed / total, etc.

• take a screenshot: s (notably if using our v script, as the -vf screenshot
command-line option must have been specified); then a shot0001.png file
will be silently created in the directory whence mplayer was launched,
next screenshot will be shot0002.png, etc.

See Also
One may refer to our other mini-HOWTO regarding:

• Network Management

• Cybersecurity

The Ceylan-Hull section system-related section might also be of interest.

33

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/v
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/v
Networking.html
Cybersecurity.html
https://hull.esperide.org/#system-related

Erlang
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Saturday, May 3, 2025

Table of Contents
Overview . 31
Let’s Start with some Shameless Advertisement for Er-

lang and the BEAM VM 31
Installation . 31
Ceylan’s Language Use 32
Using the Shell . 32
Distributed Mode of Operation 33

General Information . 33
With Our Conventions . 35

About Security . 35
OTP Guidelines . 36

The .app Specification . 36
Starting OTP Applications 36
Pre-Launch Functions . 37
OTP Supervisors . 37
Declaring Worker Processes 38
Implementing Worker Processes 38
Terminating Workers . 39
Supervisor Bridges . 39
Extra Information . 39

More Advanced Topics 40
Metaprogramming . 40
Improper Lists . 40
OpenCL . 41
Post-Mortem Investigations 41

Language Bindings . 42
Language Implementation 42

Message-Passing: Copying vs Sharing 42
Just-in-Time Compilation 42
Static Typing . 42
Software Robustness . 44
Intermediate Languages . 45

Short Hints . 45
Dealing with Conditional Availability 45
Runtime Library Version . 46
Proper Naming . 46
Formatting Erlang Code . 46
Language Features . 47

34

Disabling LCO . 47
Using run_erl/to_erl . 48
Using wx . 49
Installing rebar3 . 50
Using Emacs . 51
Contributing to Erlang/OTP 51
Uninstalling Erlang . 52

Micro-Cheat Sheet . 52
Erlang Resources . 56

Overview
Erlang is a concurrent, functional programming language available as free soft-
ware; see its official website for more details.

Erlang is dynamically typed, and is executed by the BEAM virtual machine.
This VM (Virtual Machine) operates on bytecodes and can perform Just-In-
Time compilation. It powers also other related languages, such as Elixir and
LFE.

Let’s Start with some Shameless Advertisement for Erlang
and the BEAM VM
Taken from this presentation:

Hint
What makes Elixir StackOverflow’s #4 most-loved language?
What makes Erlang and Elixir StackOverflow’s #3 and #4 best-paid
languages?
How did WhatsApp scale to billions of users with just dozens of Erlang
engineers?
What’s so special about Erlang that it powers CouchDB and RabbitMQ?
Why are multi-billion-dollar corporations like Bet365 and Klarna built
on Erlang?
Why do PepsiCo, Cars.com, Change.org, Boston’s MBTA, and Discord
all rely on Elixir?
Why was Elixir chosen to power a bank?
Why does Cisco ship 2 million Erlang devices each year? Why is Erlang
used to control 90% of Internet traffic?

Installation
Erlang can be installed thanks to the various options listed in these guidelines.

Building Erlang from the sources of its latest stable version is certainly the
best approach; for more control we prefer relying on our custom procedure.

For a development activity, we recommend also specifying the following op-
tions to our conf/install-erlang.sh script:

35

https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://www.erlang.org/
https://en.wikipedia.org/wiki/BEAM_(Erlang_virtual_machine)
https://github.com/llaisdy/beam_languages
https://erlangforums.com/t/erlang-101-processes-parallelization/594
https://www.erlang.org/downloads
https://myriad.esperide.org/#software-prerequisites

• --doc-install, so that the reference documentation can be accessed lo-
cally (in ~/Software/Erlang/Erlang-current-documentation/); creat-
ing a bookmark pointing to the module index, located in doc/man_index.html,
would most probably be useful

• --generate-plt in order to generate a PLT file allowing the static type
checking that applies to this installation (may be a bit long and processing-
intensive, yet it is to be done once per built Erlang version)

Run ./install-erlang.sh --help for more information.
Once installed, ensure that ~/Software/Erlang/Erlang-current-install/bin/

is in your PATH (e.g. by enriching your ~/.bashrc accordingly), so that you
can run erl (the Erlang interpreter) from any location, resulting a prompt like:

$ erl
Erlang/OTP 24 [erts-12.1.5] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V12.1.5 (abort with ^G)
1>

Then enter CTRL-C twice in order to come back to the (UNIX) shell.
Congratulations, you have a functional Erlang now!
To check from the command-line the version of an Erlang install:

$ erl -eval ’{ok, V} = file:read_file(filename:join([code:root_dir(), "releases", erlang:system_info(otp_release), "OTP_VERSION"])), io:fwrite(V), halt().’ -noshell
24.2

Ceylan’s Language Use
Ceylan users shall note that most of our related developments (namely Myriad,
WOOPER, Traces, LEEC, Seaplus, Mobile, US-Common, US-Web and US-
Main) depart significantly from the general conventions observed by most Erlang
applications:

• notably because of their reliance on parse transforms, by default they rely
on our own build system based on GNU make (rather than on rebar3)

• they tend not to rely on OTP abstractions such as gen_server, as WOOPER
offers OOP (Object-Oriented Programming) ones that we prefer

Using the Shell
If it is as simple to run erl, we prefer, with Ceylan settings, running make
shell in order to benefit from a well-initialized VM (notably with the full code
path of the current layer and the ones below).

Refer then to the shell commands, notably for:

• f/1, used as f(X). in order to forget a variable X, i.e. to remove the
binding of this variable and be able to (re)assign it afterwards

36

http://myriad.esperide.org
http://wooper.esperide.org
http://traces.esperide.org
http://leec.esperide.org
http://seaplus.esperide.org
http://mobile.esperide.org
http://us-common.esperide.org
http://us-web.esperide.org
http://us-main.esperide.org
http://us-main.esperide.org
Build.html#gnu-make
https://www.rebar3.org/
https://www.erlang.org/doc/man/shell.html#shell-commands

• l/1 (apparently undocumented), used as l(my_module), to (re)load that
module, purging any old version of it; convenient to reload also specifically-
built BEAMs (e.g. based on parse transforms) that may have been com-
piled behind the scene

• v/1: v(N) returns, if:

– N > 0: the result value of command of (absolute) number N
– N < 0: the result value of any previous N-th command; for example

v(-1) corresponds to the value of any previous command

• rl/1 is not "reload (module)" (use l/1 for that), it is "record list" (it
prints selected record definitions)

• c/1, used as c(my_module), to compile (if necessary) and (re)load that
module, purging any old version of it

• rr/{1,2,3} (e.g. used as rr(Path).) to read records and have them
available on the shell; for example, to be able to use the records defined
by xmerl:

1> rr(code:lib_dir(xmerl) ++ "/include/xmerl.hrl").

See also the JCL mode (for Job Control Language) to connect and interact
with other Erlang nodes.

Distributed Mode of Operation
General Information

The goal is to have processes, running on multiple Erlang VMs instantiated on
various hosts of a network, interact (of course, as always, by message-passing
based on Erlang processes).

Let’s suppose that we have two hosts, foo.example.com (possibly on the
LAN) and bar.other.info (for example a gateway available on the Internet -
hence a bit secured, and with many settings activated), each having the latest
version of Erlang installed.

To test whether VMs on either side can communicate, one may launch on
foo.example.com for example (killing EMPD and using a specific, rather ran-
dom port for it, for safer/paranoid testing; precising a TCP port range to remind
that it matters, firewall-wise):

$ killall epmd

Possibly safer to specify just ’-name myfoo’ rather directly the FQDN
(’-name myfoo@foo.example.com’), as we can check the name resolution used
by the VM (bogus values like ’-name myfoo@ibm.com’ would be accepted):
#
$ ERL_EPMD_PORT=4506 erl -name myfoo -setcookie abc -kernel inet_dist_listen_min 50000 inet_dist_listen_max 51000
Erlang/OTP 27 [erts-15.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V15.2 (press Ctrl+G to abort, type help(). for help)
(myfoo@foo.example.com)1>

37

https://www.erlang.org/doc/man/shell.html#jcl-mode

And on bar.other.info:

$ killall epmd
$ ERL_EPMD_PORT=4506 erl -name mybar@bar.other.info -setcookie abc -kernel inet_dist_listen_min 50000 inet_dist_listen_max 51000
Erlang/OTP 27 [erts-15.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V15.2 (press Ctrl+G to abort, type help(). for help)
(mybar@bar.other.info)1>

Then the following calls may be of interest, to interlink these VMs and check
that they agree on interacting.

On foo.example.com:

1> net_adm:ping(’mybar@bar.other.info’).
pong

And on bar.other.info:

1> net_adm:ping(’myfoo@foo.example.com’).
pong

Then either of the two nodes can perform mostly anything on the other host
(of course depending on the respective permissions of the users that run them);
and of course Erlang cookies are not a security feature, they are just an ad hoc
way of preventing unwanted interactions between nodes.

A lot more often than expected, pang is received (instead of pong), meaning
that unfortunately the connection could not be created.

Among the many possible pitfalls, there are (approximately sorted by de-
creasing level of probability, according to our experience):

• at least a firewall between the two hosts filtering packets, either ex-
changed by the Erlang VMs (using ephemeral ports for that, within a
possibly user-specified range), or by the EPMD daemons; one may refer
to our page about firewalls

• misconfigured (e.g. inconsistent) DNS services (e.g. one host unable to
resolve the other, or resolving it as a different name that it knows itself);
simply running hostname -f, and possibly ping foo.example.com from
bar, and ping bar.other.info from foo, may unveil surprises)

• inconsistent EPMD ports ; beware of any lingering ERL_EPMD_PORT envi-
ronment variable that may still apply (this is why, in the example, one was
specified; otherwise the default one, 4369, is expected to be relied upon)

• at least one incorrect (misspelled) target node; moreover their names
must be atoms (hence the use of single quotes, as they comprise dots)
and the FQDN should match (e.g. from the point of view of the EPMD
daemon, bar and bar.other.info might be considered different)

• mistmatching (Erlang) cookies (of course)

• mismatching name addressing: using short names (-sname) mixed with
long names (-name)

38

Networking.html#firewall-management
https://www.erlang.org/doc/apps/erts/epmd_cmd

• faulty EPMD daemons (e.g. one having missed that a node respawned;
this seldom happens, under specific circumstances) - hence the prior killings
in the example

• incompatible versions of Erlang (if in doubt, just use the latest stable one
on either side); anyway such an issue should be reported on the console

With Our Conventions

To focus a bit on developments relying on our conventions (notably the Ceylan-
Myriad ones) about firewall settings, one may first inspect the /etc/iptables.settings-Gateway.sh
file to check the firewall settings that are currently listed (e.g. grep ’myriad_default_epmd_port\|tcp_’
iptables.settings-Gateway.sh).

This may result for example in:

myriad_default_epmd_port=4502
enable_unfiltered_tcp_range="true"
tcp_unfiltered_low_port=60000
tcp_unfiltered_high_port=65000

(supposing they apply on both hosts)
One could ensure that these were indeed the ones applied (if ever the prior

settings were changed yet with no firewall reloading afterwards), by checking
the /root/.last-gateway-firewall-activation file.

Finally, one may run our iptables-inspect.sh script to request iptables
to describe its current, actual state.

Then, to test the connectivity of corresponding VMs, first on foo.example.com:

$ killall epmd beam.smp
$ ERL_EPMD_PORT=4502 erl -name myfoo@foo.example.com -setcookie abc -kernel inet_dist_listen_min 60000 inet_dist_listen_max 65000
Erlang/OTP 27 [erts-15.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V15.2 (press Ctrl+G to abort, type help(). for help)
(myfoo@foo.example.com)1>

And on bar.other.info, this could be:

$ export ERL_EPMD_PORT=4502
$ erl -name mybar@bar.other.info -setcookie abc -kernel inet_dist_listen_min 60000 inet_dist_listen_max 65000
Erlang/OTP 27 [erts-15.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V15.2 (press Ctrl+G to abort, type help(). for help)
(mybar@bar.other.info)1> net_adm:ping(’myfoo@foo.example.com’).
pong

At last it works!

About Security
• one should not encrypt messages directly with a key pair (e.g. with RSA,

only messages up to around 200 bytes long can be encrypted): one should

39

encrypt only a symmetric key (generated by a cryptographically-safe ran-
dom algorithm) that is then used to encrypt one’s message(s); ensure
an Encrypt-Then-Authenticate scheme to prevent padding oracle attacks
(and a secure-compare algorithm for the Message Authentication Code
verification to prevent timing attacks); using libsodium should make mis-
takes using the standard crypto primitives less error-prone; see the enacl
Erlang binding for that; for more information, refer to the corresponding
thread

• relevant sources of information:

– books:

∗ Cryptography Engineering: Design Principles and Practical
Applications

∗ Practical Cryptography

– the Security Working Group of the EEF (Erlang Ecosystem Founda-
tion)

OTP Guidelines
The .app Specification

For an overall application named Foobar, we recommend defining in conf/foobar.app.src
an application specification template that, once properly filled regarding the
version of that application and the modules that it comprises (possibly au-
tomatically done thanks to the Ceylan-Myriad logic), will result in an actual
application specification file, foobar.app.

Such a file is necessary in all cases, to generate an OTP application (oth-
erwise with rebar3 nothing will be built), an OTP release (otherwise the ap-
plication dependencies will not be reachable), and probably an hex package as
well.

This specification content is to end up in various places:

• in ebin/foobar.app

• if using rebar3, in the OTP build tree (by default: ./_build/lib/foobar/ebin/foobar.app)

• with src/foobar.app.src being a symbolic link pointing to ebin/foobar.app
(probably at least for hex)

Starting OTP Applications

For an OTP active application of interest - that is one that provides an actual
service, i.e. running processes, as opposed to a mere library application, which
provides only code - such a specification defines, among other elements, which
module will be used to start this application. We recommend to name this
module according to the target application and to suffix it with _app, like in:

{application, foobar, [
[...]
{mod, {foobar_app, [hello]}},
[...]

40

https://doc.libsodium.org/
https://github.com/jlouis/enacl
https://erlangforums.com/t/cannot-encrypt-a-long-binary-using-public-key-encrypt-private-2/724
https://erlangforums.com/t/cannot-encrypt-a-long-binary-using-public-key-encrypt-private-2/724
https://erlef.github.io/security-wg/secure_coding_and_deployment_hardening/
http://myriad.esperide.org
http://rebar3.org/
https://hex.pm/

This implies that once a user code will call application:start(foobar),
then foobar_app:start(_Type=normal, _Args=[hello]) will be called in turn.

This start/2 function, together with its stop/1 reciprocal, are the functions
listed by the OTP (active) application behaviour; at least for clarity, it is
better that foobar_app.erl comprises -behaviour(application).

Pre-Launch Functions

The previous OTP callbacks may be called by specific-purpose launching code;
we tend to define an exec/0 function for that: then, with the Myriad make sys-
tem, executing on the command-line make foobar_exec results in foobar_app:exec/0
to be called.

Having such a pre-launch function is useful when having to set specific in-
formation beforehand (see application:set_env/{1,2}) and/or when starting
by oneself applications (e.g. see otp_utils:start_applications/2).

In any case this should result in foobar_app:start/2 to be called at applica-
tion startup, a function whose purpose is generally to spawn the root supervisor
of this application.

Note that, alternatively (perhaps for some uncommon debugging needs),
one may execute one’s application (e.g. foo) by oneself, knowing that doing so
requires starting beforehand the applications it depends on - be them Erlang-
standard (e.g. kernel, stdlib) or user-provided (e.g. bar, buz); for that
both their modules7 and their .app file8 must be found.

This can be done with:

$ erl -pa XXX/bar/ebin -pa YYY/buz/ebin -pa ZZZ/foo/ebin

Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
1> application:ensure_all_started([kernel, stdlib, bar, buz, foo]).

Then the foo application shall be launched, and a shell be available to
interact with the corresponding VM.

OTP Supervisors

The purpose of supervisors is to ease the development of fault-tolerant applica-
tions by building hierarchical process structures called supervision trees.

For that, supervisors are to monitor their children, that may be workers
(typically implementing the gen_{event,server,statem} behaviour) and/or
other supervisors (they can thus be nested).

We recommend to define a foobar_sup:start_link/0 function (it is an
user-level API, so any name and arity can be used). This foobar_sup mod-
ule is meant to implement the supervisor behaviour (to be declared with

7If using Ceylan-Myriad, run, from the root of foo, make copy-all-beams-to-ebins to
populate the ebin directories of all layers (knowing that by default each module is only to be
found directly from its source/build directory, and thus such a copy is usually unnecessary).

8If using Ceylan-Myriad, run, from the root of foo, make create-app-file.

41

-behaviour(supervisor).), which in practice requires an init/1 function to
be defined.

So this results, in foobar_sup, in a code akin to:

-spec start_link() -> supervisor:startlink_ret().
start_link() ->

% This will result in calling init/1 next:
supervisor:start_link(_Registration={local, my_foobar_main_sup},

_Mod=?MODULE, _Args=[]).

-spec init(list()) -> {’ok’, {supervisor:sup_flags(), [child_spec()]}}.
init(_Args=[]) ->

[...]
{ok, {SupSettings, ChildSpecs}}.

Declaring Worker Processes

Our otp_utils module may help a bit defining proper restart strategies and
child specifications, i.e. the information regarding the workers that will be
supervised, here, by this root supervisor.

For example it could be:

init(_Args=[]) ->
[...]
SupSettings = otp_utils:get_supervisor_settings(

_RestartStrategy=one_for_one, ExecTarget),
% Always restarted in production:
RestartSettings = otp_utils:get_restart_setting(ExecTarget),
WorkerShutdownDuration =

otp_utils:get_maximum_shutdown_duration(ExecTarget),
% First child, the main Foobar worker process:
MainWorkerChild = #{

id => foobar_main_worker_id,
start => {_Mod=foobar, _Fun=start_link,

_MainWorkerArgs=[A, B, C]},
restart => RestartSettings,
shutdown => WorkerShutdownDuration,
type => worker,
modules => [foobar] },

ChildSpecs = [MainWorkerChild],
{ok, {SupSettings, ChildSpecs}}.

Children are created synchronously and in the order of their specification9.
So if ChildSpecs=[A, B, C], then a child according to the A spec is first

created, then, once it is over (either its init/1 finished successfully, or it called
proc_lib:init_ack/{1,2}10 and then continued its own initialisation concur-
rently), a child according to the B spec is created, then once done a child
according to the C spec.

9Yet some interleaving is possible thanks to proc_lib:init_ack/1.
10Typically: proc_lib:init_ack(self()).

42

Implementing Worker Processes

Such a worker, which can be any Erlang process (implementing an OTP be-
haviour, like gen_server, or not) will thus be spawned here through a call to
the foobar:start_link/3 function (another user-defined API) made by this
supervisor. This is a mere call (an apply/3), not a spawn of a child process
based on that function.

Therefore the called function is expected to create the worker process by
itself, like, in the foobar module:

start_link(A, B ,C) ->
[...]
{ok, proc_lib:start_link(?MODULE, _Func=init,

_Args=[U, V], _Timeout=infinity, SpawnOpts)}.

Here thus the spawned worker will start by executing foobar:init/2, a func-
tion not expected to return, often trapping EXIT signals (process_flag(trap_exit,
true)), setting system flags and, once properly initialised, notifying its super-
visor that it is up and running (e.g. proc_lib:init_ack(_Return=self()))
before usually entering a tail-recursive loop.

Terminating Workers

Depending on the shutdown entry of its child specification, on application stop
that worker may be terminated by different ways. We tend to prefer specifying
a maximum shutdown duration: then the worker will be sent by its supervisor
first a shutdown EXIT message, that this worker may handle, typically in its
main loop:

receive
[...]

{’EXIT’, _SupervisorPid, shutdown} ->
% Just stop.
[...]

If the worker fails to stop (on time, or at all) and properly terminate, it will
then be brutally killed by its supervisor.

Supervisor Bridges

Non-OTP processes (e.g. WOOPER instances) can act as supervisors thanks
to the supervisor_bridge module.

Such a process shall implement the supervisor_bridge behaviour, namely
init/1 and terminate/2. If the former function spawns a process, the latter
shall ensure that this process terminates in a synchronous manner, otherwise
race conditions may happen.

See traces_bridge_sup for an example thereof.

43

http://wooper.esperide.org
https://www.erlang.org/doc/man/supervisor_bridge.html
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/traces_bridge_sup.erl

Extra Information

One may refer to;

• Ceylan-Myriad as an example of OTP Library Application

• Ceylan-WOOPER or Ceylan-Traces as examples of OTP Active Applica-
tions

• US-Web as an example of most of these supervisor principles

More Advanced Topics
Metaprogramming

Metaprogramming is to be done in Erlang through parse transforms, which
are user-defined modules that transform an AST (for Abstract Syntax Trees,
an Erlang term that represents actual code; see the Abstract Format for more
details) into another AST that is fed afterwards to the compiler.

See also:

• this introduction to parse transforms

• Ceylan-Myriad’s support for metaprogramming

Improper Lists

A proper list is created from the empty one ([], also known as "nil") by append-
ing (with the | operator, a.k.a. "cons") elements in turn; for example [1,2] is
actually [1 | [2 | []]].

However, instead of enriching a list from the empty one, one can start a list
with any other term than [], for example my_atom. Then, instead of [2|[]],
[2|my_atom] may be specified and will be indeed a list - albeit an improper
one.

Many recursive functions expect proper lists, and will fail (typically with a
function clause) if given an improper list to process (e.g. lists:flatten/1).

So, why not banning such construct? Why even standard modules like
digraph rely on improper lists?

The reason is that improper lists are a way to reduce the memory footprint
of some datastructures, by storing a value of interest instead of the empty list.

Indeed, as explained in this post, a (proper) list of 2 elements will consume:

• 1 list cell (2 words of memory) to store the first element and a pointer to
second cell

• 1 list cell (2 more words) to store the second element and the empty list

For a total of 4 words of memory (so, on a 64-bit architecture, it is 32 bytes).
As for an improper list of 2 elements, only 1 list cell (2 words of memory)

will be consumed to store the first element and then the second one.
Such a solution is even more compact than a pair (a 2-element tuple), which

consumes 2+1 = 3 words. Accessing the elements of an improper list is also
faster (one handle to be inspected vs also an header to be inspected).

Finally, for sizes expressed in bytes:

44

http://myriad.esperide.org
http://wooper.esperide.org
http://traces.esperide.org
http://us-web.esperide.org
https://en.wikipedia.org/wiki/Metaprogramming
https://www.erlang.org/doc/apps/erts/absform.html
https://chlorophil.blogspot.com/2007/04/erlang-macro-processor-v1-part-i.html
https://myriad.esperide.org/#support-for-metaprogramming
https://groups.google.com/g/erlang-programming/c/mQLS5yGX_8g/m/Ad4VVyOUDQAJ

1> system_utils:get_size([2,my_atom]).
40

2> system_utils:get_size({2,my_atom}).
32

3> system_utils:get_size([2|my_atom]).
24

See also the 1, 2 pointers for more information.
Everyone shall decide on whether relying on improper lists is a trick, a hack

or a technique to prohibit.

OpenCL

Open Computing Language is a standard interface designed to program many
processing architectures, such as CPUs, GPUs, DSPs, FPGAs.

OpenCL is notably a way of using one’s GPU to perform more general-
purpose processing than typically the rendering operations allowed by GLSL
(even compared to its compute shaders).

In Erlang, the cl binding is available for that.
A notable user thereof is Wing3D; one may refer to the *.cl files in this

directory, but also to its optional build integration as a source of inspiration,
and to wings_cl.erl.

Post-Mortem Investigations

Erlang programs may fail, and this may result in mere (Erlang-level) crashes (the
VM detects an error, and reports information about it, possibly in the form of
a crash dump) or (sometimes, quite infrequently though) in more brutal, lower-
level core dumps (the VM crashes as a whole, like any faulty program run by
the operating system); this last case happens typically when relying on faulty
NIFs.

Monitoring To monitor a (live, Erlang) application, one may use:

• the (integrated) observer graphical tool (either locally, or remotely with
observer:start/1)

• an headless (command-line) observer: observer_cli

• a monitoring and introspection application: system_monitor

• an observer web frontend

Erlang Crash Dumps If experiencing "only" an Erlang-level crash, a erl_crash.dump
file is produced in the directory whence the executable (generally erl) was
launched. The best way to study it is to use the cdv (refer to crashdump
viewer) tool, available, from the Erlang installation, as lib/erlang/cdv11.

Using this debug tool is as easy as:

11Hence, according to the Ceylan-Myriad conventions, in
~/Software/Erlang/Erlang-current-install/lib/erlang/cdv.

45

http://beam-wisdoms.clau.se/en/latest/indepth-memory-layout.html#lists-cons
http://beam-wisdoms.clau.se/en/latest/indepth-data-sizes.html#list
https://en.wikipedia.org/wiki/OpenCL
ThreeDimensional.html#glsl
https://github.com/tonyrog/cl
ThreeDimensional.html#wings3d
https://github.com/dgud/wings/tree/master/shaders
https://github.com/dgud/wings/tree/master/shaders
https://github.com/dgud/wings/blob/master/src/wings_cl.erl
https://www.erlang.org/doc/tutorial/nif.html
https://www.erlang.org/doc/apps/observer/observer_ug
https://hexdocs.pm/observer_cli/
https://github.com/ieQu1/system_monitor
https://github.com/systra/ObserverWeb
https://www.erlang.org/doc/apps/observer/crashdump_ug.html
https://www.erlang.org/doc/apps/observer/crashdump_ug.html

$ cdv erl_crash.dump

Then, through the wx-based interface, a rather large number of Erlang-level
information will be available (processes, ports, ETS tables, nodes, modules,
memory, etc.) to better understand the context of this crash and hopefully
diagnose its root cause.

Core Dumps In the worst cases, the VM will crash like any other OS-level
process, and generic (non Erlang-specific) tools will have to be used. Do not
expect to be pointed to line numbers in Erlang source files anymore!

Refer to our general section dedicated to core dumps for that.

Language Bindings
The two main approaches in order to integrate third-party code to Erlang are
to:

• interact with it as if it was another Erlang node; we defined Ceylan-Seaplus
for that purpose, to simplify the binding of C code; other libraries provide
link to various languages

• directly link the current Erlang VM to this code, through NIF; for C, it
can be done manually, or may be automatised thanks to nifty, which is
an Erlang NIF Wrapper Generator ; this can be especially useful for larger
APIs (e.g. SDL); see also rusterl, which allows to write NIFs in safe Rust
code

Language Implementation
Message-Passing: Copying vs Sharing

Knowing that, in functional languages such as Erlang, terms ("variables") are
immutable, why could not they be shared between local processes when sent
through messages, instead of being copied in the heap of each of them, as it is
actually the case with the Erlang VM?

The reason lies in the fact that, beyond the constness of these terms, their
life-cycle has also to be managed. If they are copied, each process can very easily
perform its (concurrent, autonomous) garbage collections. On the contrary, if
terms were shared, then reference counting would be needed to deallocate them
properly (neither too soon nor never at all), which, in a concurrent context, is
bound to require locks.

So a trade-off between memory (due to data duplication) and processing
(due to lock contention) has to be found and at least for most terms (excepted
larger binaries), the sweet spot consists in sacrificing a bit of memory in favour
of a lesser CPU load. Solutions like persistent_term may address situations
where more specific needs arise.

Just-in-Time Compilation

This long-awaited feature, named BeamAsm and whose rationale and history
have been detailed in these articles, has been introduced in Erlang 24 and shall
transparently lead to increased performances for most applications.

46

GNULinux.html#core-dumps
http://seaplus.esperide.org
https://www.erlang.org/doc/tutorial/nif.html
https://github.com/parapluu/nifty
https://www.libsdl.org/
https://docs.rs/rustler/latest/rustler/pub
https://www.erlang.org/doc/man/persistent_term.html
https://www.erlang.org/blog/the-road-to-the-jit/

Static Typing

Static type checking can be performed on Erlang code; the usual course of action
is to use Dialyzer - albeit other solutions like Gradualizer and also eqWAlizer
exist, and are mostly complementary (see also 1 and 2).

More precisely:

• Dialyzer is a discrepancy analyzer that aims to prove the presence of
type-induced runtime crashes (it may not be able to detect all type
problems, yet "is never wrong"); Dialyzer does not use type specifications
to guide the analysis: first it infers type information, and then only, if
requested, it checks that information against the type specifications; so
Dialyzer may operate with or without type specifications

• whereas tools like Gradualizer and eqWAlizer are more conventional type
systems, based on the theory of gradual typing, that aim to prove the
absence of such crashes; notably Gradualizer depends intimately on
type specifications: by default, without them, no static typing happens

See EEP 61 for further typing-related information12.
Also a few statically-typed languages can operate on top of the Erlang

VM, even if none has reached yet the popularity of Erlang or Elixir (that are
dynamically-typed).

In addition to the increased type safety that statically-typed languages per-
mit (possibly applying to sequential code but also to inter-process messages),
it is unsure whether such extra static awareness may also lead to better perfor-
mances (especially now that the standard compiler supports JIT).

Beyond mere code, the messages exchanges between processes could also
be typed and checked. Version upgrades could also benefit from it. Of course
type-related errors are only a subset of the software errors.

Note that developments that rely on parse-transforms (almost all ours, di-
rectly or not) shall be verified based on their BEAM files (hence their actual,
final output) rather than on their sources (as the checking would be done on
code not transformed yet). See also the Type-checking Myriad section.

About Dialyzer

Installing Dialyzer Nothing is to be done, as Dialyzer is included in the
standard Erlang distribution.

Using Dialyzer Our preferred options (beyond path specifications of course)
are: -Wextra_return -Wmissing_return -Wno_return -Werror_handling -Wno_improper_lists
-Wno_unused -Wunderspecs. See the DIALYZER_OPTS variable in Myriad’s GNU-
makevars.inc and the copiously commented options.

A problem is that typing errors tend to snowball: many false positives (func-
tions that are correct but whose call is not because an error upward in the call-
graph) may be reported (leading to the infamous Function f/N has no local
return, which does not tell much).

12On a side note, the (newer) dynamic() type mentioned there is often used to mark "in-
herently dynamic code", like reading from ETS, message passing, deserialization and so on.

47

https://www.erlang.org/doc/man/dialyzer.html
https://github.com/josefs/Gradualizer
https://github.com/WhatsApp/eqwalizer
https://learnyousomeerlang.com/types-or-lack-thereof#for-type-junkies
https://learnyousomeerlang.com/dialyzer
https://www.erlang.org/eeps/eep-0061
https://github.com/llaisdy/beam_languages#statically-typed-languages
https://myriad.esperide.org/#type-checking-myriad
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakevars.inc

We recommend focusing on the first error reported for each module, and
re-running the static analysis once supposedly fixed.

About Gradualizer

Installing Gradualizer We install Gradualizer that way:

$ cd ~/Software
$ mkdir gradualizer && cd gradualizer
$ git clone https://github.com/josefs/Gradualizer.git
$ cd Gradualizer
$ make escript

Then just ensure that the ~/Software/gradualizer/Gradualizer/bin di-
rectory is in your PATH (e.g. set in your .bashrc).

Using Gradualizer Our preferred options (beyond path specifications
of course) are: --infer --fmt_location verbose --fancy --color always
--stop_on_first_error. See the GRADUALIZER_OPTS variable in Myriad’s GNU-
makevars.inc and the copiously commented options..

About eqWAlizer It is a tool developed in Rust.

Installing eqWAlizer We install eqWAlizer that way:

$ cd ~/Software
$ mkdir -p eqwalizer && cd eqwalizer
$ wget https://github.com/WhatsApp/eqwalizer/releases/download/vx.y.z/elp-linux.tar.gz
$ tar xvf elp-linux.tar.gz && mkdir -p bin && /bin/mv -f elp bin/

Then just ensure that the ~/Software/eqwalizer/bin directory is in your
PATH (e.g. set in your .bashrc).

Using eqWAlizer We use it out of a rebar3 context.
Settings are to be stored in a JSON file (e.g. conf/foobar-for-eqwalizer.json),

to be designated thanks to the --project option.
See also the EQWALIZER_OPTS variable in Myriad’s GNUmakevars.inc and its

own myriad-for-eqwalizer.json project file.
(our first test was not successful, we will have to investigate more when time

permits)

Software Robustness

Type correctness is essential, yet of course it does not guarantee that a program
is correct and relevant. Other approaches, like the checking of other properties
(notably concurrency, see Concuerror) can be very useful.

Beyond checking, testing is also an invaluable help for bug-fixing. Various
tools may help, including QuickCheck.

Finally, not all errors can be anticipated, from network outages, hardware
failures to human factor. An effective last line of defence is to rely on (this time

48

https://github.com/josefs/Gradualizer
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakevars.inc
https://github.com/WhatsApp/eqwalizer
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/myriad-for-eqwalizer.json
https://github.com/parapluu/Concuerror
http://www.quviq.com/products/erlang-quickcheck/

at runtime) supervision mechanisms in order to detect any kind of faults
(bound to happen, whether expected or not), and overcome them. The OTP
framework is an excellent example of such system, much useful to reach higher
levels of robustness, including the well-known nine nines - that is an availability
of 99.9999999%.

Intermediate Languages

To better discover the inner workings of the Erlang compilation, one may look
at the eplaypen online demo (whose project is here) and/or at the Compiler
Explorer (which supports the Erlang language among others).

Both of them allow to read the intermediate representations involved when
compiling Erlang code (BEAM stage, erl_scan, preprocessed sources, abstract
code, Core Erlang, Static Single Assignment form, BEAM VM assembler op-
codes, x86-64 assembler generated by the JIT, etc.).

Short Hints
Dealing with Conditional Availability

Regarding modules, and from the command-line Depending on how
Erlang was built in a given environment, some modules may or may not be
available.

A way of determining availability and/or version of a module (e.g. wx, cl,
crypto) from the command-line:

$ erl -noshell -eval ’erlang:display(code:which(wx))’ -s erlang halt
"/home/bond/Software/Erlang/Erlang-24.2/lib/erlang/lib/wx-2.1.1/ebin/wx.beam"

$ erl -noshell -eval ’erlang:display(code:which(cl))’ -s erlang halt
non_existing

A corresponding in-makefile test, taken from Wings3D:

Check if OpenCL package is as external dependency:
CL_PATH = $(shell $(ERL) -noshell -eval ’erlang:display(code:which(cl))’ -s erlang halt)
ifneq (,$(findstring non_existing, $(CL_PATH)))

Add it if not found:
DEPS=cl

endif

Regarding language features, from code Some features appeared in later
Erlang versions, and may be conditionally enabled.

For example:

FullSpawnOpts = case erlang:system_info(version) >= "8.1" of

true ->
[{message_queue_data, off_heap}|BaseSpawnOpts];

49

http://tryerl.seriyps.ru/
https://github.com/seriyps/eplaypen
https://godbolt.org/
https://godbolt.org/

false ->
BaseSpawnOpts

end,
[...]

Runtime Library Version

To know which version of a library (here, wxWidgets) a given Erlang install
is using (if any), one may run an Erlang shell (erl), collect the PID of this
(UNIX) process (e.g. ps -edf | grep beam), then trigger a use of that library
(e.g. for wx, execute wx:demo().) in order to force its dynamic binding.

Then determine its name, for example thanks to pmap ${BEAM_PID} | grep
libwx).

This may indicate that for example libwx_gtk2u_core-3.0.so.0.5.0 is
actually used.

Proper Naming

Variable Shorthands Usually we apply the following conventions:

• the head and tail of a list are designated as H and T, like in: L = [H|T]

• Acc means accumulator, in a tail-recursive function

• K designates a key, and V designates its associated value

• a list of elements is designated by a plural variable name, usually suffixed
with s, like in: Ints, Xs, Cars

Function Pairs To better denote reciprocal operations, following namings for
functions may be used:

• for services:

– activation: start / stop

– setup: init / terminate

• for instances:

– life-cycle: new / delete

– construction/destruction: create / destruct (e.g. avoid destroy
there)

Formatting Erlang Code

Various tools are able to format Erlang code, see this page for a comparison
thereof.

50

https://github.com/WhatsApp/erlfmt/blob/main/doc/ErlangFormatterComparison.md

With rebar3_format For projects already relying on rebar, one may use re-
bar3_format (as a plugin13) that way:

$ cd ~/Software
$ git clone https://github.com/AdRoll/rebar3_format.git
$ cd rebar3_format
$ ERL_FLAGS="-enable-feature all" rebar3 format

Then {project_plugins, [rebar3_format]} shall be added to the project’s
rebar.config.

With erlfmt Another tool is erlfmt, which can be installed that way:

$ cd ~/Software
$ git clone https://github.com/WhatsApp/erlfmt
$ cd erlfmt
$ rebar3 as release escriptize

And then ~/Software/erlfmt/_build/release/bin can be added to one’s
PATH.

Indeed erlfmt can be used as a rebar plugin or as a standalone escript -
which we find useful, especially for projects whose build is not rebar-based.

Running it to reformat in-place source files is then as simple as:

$ erlfmt --write foo.hrl bar.erl

Language Features

Experimental features (such as maybe in Erlang 25) of the compiler (once
Erlang has been built, they are potentially available) may have to be specifi-
cally enabled at runtime, like in ERL_FLAGS="-enable-feature all" rebar3
as release escriptize.

Disabling LCO

LCO means here Last Call Optimisation. This consists simply when, in a given
module, a (typically exported) function f ends by calling a local function g (i.e.
has for last expression a call like g(...)), in not pushing on the stack the call
to g, but instead replacing directly the stackframe of f (which can be skipped
here, as returning from g will mean directly returning from f as well) with a
proper one for g.

This trick spares the use of one level of stack at each ending local call, which
is key for recursive functions14 (typically for infinitely-looping server processes):
they remain then in constant stack space, whereas otherwise the number of
their stackframes would grow indefinitely, at each recursive call, and explode in
memory.

13Note that rebar3_format cannot be used as an escript (so no
ERL_FLAGS="-enable-feature all" rebar3 as release escriptize shall be issued).

14When the last call of f branches to f itself, it is named TCO, for Tail Call Optimisation
(which is thus a special - albeit essential - case of LCO).

51

https://github.com/AdRoll/rebar3_format
https://github.com/AdRoll/rebar3_format
https://github.com/WhatsApp/erlfmt

So LCO is surely not an option for a functional language like Erlang, yet it
comes with a drawback: if f ends with a last call to g that ends with a last
call to h and a runtime error happens in them, none of these functions will
appear in the resulting stacktraces: supposing all these functions use a library
foobar, it will be as if the VM directly jumped from the entry point in the user
code (typically a function calling f) to the failing point in a function of foobar;
there will be no line number pointing to the expression of f, g or h that triggers
the faulty behaviour, whereas this is probably the information we are mostly
interested in - as these functions may make numerous calls to foobar’s function.
This makes the debugging unnecessarily difficult.

Yet various workarounds exist (see this topic for more information) - just for
debugging purposes - so that given "suspicious" functions (here f, g or h) are
not LCO’ed:

• to have their returned values wrapped in a remote call to an identity
function (we use basic_utils:identity/1 for that)

• or to have them wrapped (at least their end, i.e. their last expression(s))
with try ... catch E -> throw(E) end

• or to return-trace these functions, as it temporarily disables LCO and
allows to be very selective (one can limit this to a specific process or
certain conditions, with match specs; refer to dbg for more details; note
that the module of interest must be compiled with debug_info so that it
can be traced)

The first workaround is probably the simplest, when operating on "suspi-
cious" modules of interest (knowing that LCO is useful, and should still apply
to most essential server-like processes).

One can nevertheless note that unfortunately LCO is not the only cause for
the vanishing of calls in the stacktrace (even in the absence of any function
inlining).

Within Ceylan-Myriad, if the (non-default) myriad_disable_lco compi-
lation option is set (typically with the -Dmyriad_disable_lco command-line
flag), this workaround is applied automatically on the modules on which the
Myriad parse transform operates - i.e. all but bootstrapped modules (refer to the
lco_disabling_clause_transform_fun/2 function of the myriad_parse_transform
module).

Using run_erl/to_erl

When using run_erl, lines like the following are output:

Write pipe ’/tmp/launch-erl-3822033.w’ found, waiting 2 seconds to ensure start-up is successful indeed.

**
** Node ’us_main’ ready and running as a daemon.
** Use ’to_erl /tmp/launch-erl-3822033’ to connect to that node.
** (then type CTRL-D to exit without killing the node)
**
(authbind success reported)

52

https://erlangforums.com/t/disabling-tco-selectively/3091
https://www.erlang.org/doc/man/dbg.html
http://myriad.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/meta/myriad_parse_transform.erl
https://www.erlang.org/docs/26/man/run_erl.html

EPMD names output (on default US-Main port):
epmd: up and running on port 4507 with data:
name us_main at port 50002
name us_main_exec-xxx at port 60001

If connecting to that node with to_erl /tmp/launch-erl-3822033 (hence
from the local host), a direct access to an Erlang shell on that node is granted.

Remember that exiting the interpreter as usual (hitting CTRL-C twice) thus
means killing that node; so prefer CTRL-D (once) instead!

Using wx

wx is now15 the standard Erlang way of programming one’s graphical user in-
terface; it is a binding to the wxWidgets library.

Here are some very general wx-related information that may be of help when
programming GUIs with this backend:

• in wxWidgets parlance, "window" designates any kind of widget (not only
frame-like elements)

• if receiving errors about {badarg,"This"}, like in:

{’_wxe_error_’,710,{wxDC,setPen,2},{badarg,"This"}}

it is probably the sign that the user code attempted to perform an operation
on an already-deallocated wx object; the corresponding life-cycle management
might be error-prone, as some deallocations are implicit, others are explicit, and
in a concurrent context race conditions easily happen

• if creating, from a wx-using process, another one, this one should set a
relevant environment first (see wx:set_env/1) before using wx functions

• the way wx/wxWidgets manage event propagation is complex; here are
some elements:

– for each actual event happening, wx creates an instance of wxEvent
(a direct, abstract child class of wxObject), which itself is specialised
into many event classes that are more concrete

– among them, they are so-called command events, which originate
from a variety of simple controls and correspond to the wxComman-
dEvent mother class; by default only these command events are set
to propagate, i.e. only them will be transmitted to the event handler
of the parent widget if the current one does not process them by itself
("did not connect to them")

15wx replaced gs. To shelter already-developed graphical applications from any future change
of backend, we developed MyriadGUI, an interface doing its best to hide the underlying
graphical backend at hand: should the best option in Erlang change, that API would have
to be ported to the newer backend, hopefully with little to (ideally) no change in the user
applications.

53

https://www.erlang.org/doc/man/wx.html
http://www.wxwidgets.org/
https://docs.wxwidgets.org/latest/overview_events.html#overview_events_propagation
https://docs.wxwidgets.org/latest/classwx_event.html
https://docs.wxwidgets.org/latest/classwx_command_event.html
https://docs.wxwidgets.org/latest/classwx_command_event.html
https://www.erlang.org/docs/18/man/gs.html
https://myriad.esperide.org/#graphical-user-interface-gui

– by default, for a given type of event, when defining one’s event han-
dler (typically when connecting a process to the emitter of such
events), this event will not be propagated anymore, possibly pre-
venting the built-in wx event handlers to operate (e.g. to properly
manage resizings); to restore their activation, skip (to be understood
here as "propagate event" - however counter-intuitive it may seem)
shall be set to true (either by passing a corresponding option when
connecting, or by calling wxEvent:skip/2 with skip set to true from
one’s event handler)16

– when a process connects to the emitter of a given type of events
(e.g. close_window for a given frame), this process is to receive cor-
responding messages and then perform any kind of operation; how-
ever these operations cannot be synchronous (they are non-blocking:
the process does not send to anyone any notification that it fin-
ished handling that event), and thus, if skip is true (that is, if
event propagation is enabled), any other associated event handler(s)
will be triggered concurrently to the processing of these event mes-
sages; this may be a problem for example if a controller listens to the
close_window event emitted by a main frame in order to perform
a proper termination: the basic, built-in event handlers will then
by default be triggered whereas the controller teardown may be still
in progress, and this may result in errors (e.g. OpenGL ones, like
{{{badarg,"This"},{wxGLCanvas,swapBuffers,1}},... because
the built-in close handlers already deallocated the OpenGL context);
a proper design is to ensure that skip remains set to false so that
propagation of such events is disabled in these cases: then only the
user code is in charge of closing the application, at its own pace17

• in terms of sizing, the dimensions of a parent widget prevail: its child
widgets have to adapt (typically with sizers); if wanting instead that the
size of a child dictates the one of its parent, the size of the client area of
the parent should be set to the best size of its child, or its fit/1 method
shall be called

Extra information resources about wx (besides the documentation of its mod-
ules):

• the graphical class hierarchy of the wxWindow class, as this class corre-
sponds to the concept of widget, which is very central

• graphical repositories of most widgets (screenshots thereof)

16MyriadGUI took a different convention: whether an event will propagate by default de-
pends on its type, knowing that most of the types are to propagate. Yet the user can override
these default behaviours, by specifying either the trap_event or the propagate_event sub-
scription option, or by calling either the trap_event/1 or the propagate_event/1 function.

17This is why MyriadGUI applies per-event type defaults, thus possibly trapping events;
in this case, if the built-in backend mechanisms would still be of use, they can be triggered
by calling the propagate_event/1 function from the user-defined handler, only once all its
prerequisite operations have been performed (this is thus a way of restoring sequential oper-
ations).

54

https://docs.wxwidgets.org/latest/classwx_window.html
https://docs.wxwidgets.org/latest/page_screenshots.html

• wxErlang: Getting started and Speeding up, by Arif Ishaq

• Doug Edmunds’ wxerlang workups

• wxWidgets itself

Installing rebar3

One may use our install-rebar3.sh script for that (installed from sources, or
prebuilt).

Using Emacs

Even when applying only the minimal Erlang configuration, a syntax-highlighting
problem can often be noticed (at least with our code and Erlang 27.2 / Emacs
29.4), often starting after a docstring delimited with three double-quotes; then
for example words in string literals are highlighted as if they were language
keywords.

This can be fixed by selecting, in the Erlang (Emacs) menu, the Syntax
Highlighting submenu, then any level (e.g. Level 4, corresponding to erlang-font-lock-level-4,
which can be set with (setq font-lock-maximum-decoration 4)).

in init.el, a specific key (here, F11) may be assigned for that:

(global-set-key [f11] ’erlang-font-lock-level-4)

Problem: it would have to be entered again and again, even for a single
buffer...

Contributing to Erlang/OTP

A simple procedure may be:

• first, check, especially in the case of a bug fixing, whether it corresponds
to an already known issue

• read at least the Submitting Pull Requests section of the official Er-
lang/OTP contribution guide; for documentation-related contributions,
refer to these guidelines

• from one’s GitHub account, fork the Erlang/OTP official repository, https://github.com/erlang/otp
(just click on Fork, at the top-right of this page), possibly as erlang-otp
for clarity

• clone it; for example:

$ cd ~/Software/Erlang
$ git clone https://github.com/James-Bond/erlang-otp.git erlang-otp-github-my-fork
$ cd erlang-otp-github-my-fork

• (configure your clone appropriately in order to authenticate easily)

• let’s suppose the branch of the upcoming pull request is to derive from
the maint one, and be named component/improve-something:

55

https://arifishaq.files.wordpress.com/2017/12/wxerlang-getting-started.pdf
https://arifishaq.files.wordpress.com/2018/04/wxerlang-speeding-up.pdf
http://wxerlang.dougedmunds.com/
https://www.wxwidgets.org/
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/install-rebar3.sh
https://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html#setup-on-unix
https://github.com/erlang/otp/issues
https://github.com/Olivier-Boudeville/erlang-otp/blob/master/CONTRIBUTING.md#submitting-pull-requests
https://github.com/erlang/otp/wiki/Documentation

$ git remote add upstream https://github.com/erlang/otp.git
$ git fetch upstream maint
$ git checkout maint
$ git checkout -b component/improve-something

• perform the changes, and commit them, with a message such as Fix some
element of something (refer for that to the Writing good commit mes-
sages Erlang-official guidelines)

• push them: git push origin HEAD

• create a corresponding pull request (PR) by visiting the link proposed by
the remote, for example https://github.com/James-Bond/erlang-otp/pull/new/component/improve-something

• in order to assess the corresponding authorisations of use/compliance, sign
a suitable Contributor License Agreement (CLA), thanks to the CLAas-
sistant that automatically participates to the PR conversation

• wait for the automated tests (continuous integration) to pass and a re-
viewer to accept or deny this PR, or to request changes that one’s does
one’s best to apply

Finally the PR is successfully merged, accepted and closed (see this example)
- and congratulations, you are an happy contributor to Erlang/OTP!

More in-depth readings on that topic:

• Everything you need to know to start contributing to Erlang today!, by
Viacheslav Katsuba, especially to detail how changes should be performed
and tested

• Writing OTP Modules, by Kenji Rikitake

Uninstalling Erlang

Typically useful to prevent version clashes / use of an unexpected version.
If Erlang was installed:

• thanks to a package manager, uninstall it the same way

• from sources, with a prefix (default one being PREFIX=/usr/local), then
execute, possibly as root:

$ cd $PREFIX/bin && /bin/rm -f ct_run dialyzer epmd erl erlc escript run_erl to_erl typer
$ cd $PREFIX/lib && /bin/rm -rf erlang

Micro-Cheat Sheet
To avoid having to perform a lookup in the documentation:

• Erlang indices start at 1, except the ones of the array module that are
zero-based

• when they yield the same result, =:= is a bit more efficient than ==

56

https://github.com/erlang/otp/wiki/Writing-good-commit-messages
https://github.com/erlang/otp/wiki/Writing-good-commit-messages
https://github.com/cla-assistant/cla-assistant
https://github.com/cla-assistant/cla-assistant
https://github.com/erlang/otp/pull/9425
https://medium.com/erlang-battleground/all-you-need-to-know-to-start-contributing-to-erlang-2fcd5748319e
https://docs.jj1bdx.tokyo/writing-otp-modules/html/

• for tuples of unknown number of elements:

– setting an element is to be done with setelement(positive_index(),
tuple(), term()) -> tuple()

– extracting an element is to be done with element(positive_index(),
tuple()) -> term()

– adding an element at a given index (e.g. to append a record tag) is to
be done with erlang:insert_element(positive_index(), tuple(),
term()) -> tuple()

– removing an element at a given index (e.g. to chop a record tag) is to
be done with erlang:delete_element(positive_index(), tuple())
-> tuple()

(no need for the erlang module to be explicitly specified for the first two
functions, as both are auto-imported)

• for maps: refer to map expressions, the maps module and the correspond-
ing part of the efficiency guide; in short:

– creating/updating maps is EmptyMap = #{}, NewMFromScratch = #{K1
=> V1, K2 => V2} or UpdatedM = M#{K1 => V1, K2 => V2}

– updating the value associated to an already-existing key K is ModM =
M#{K := V}

– matching is #{K1 := V1, K2 := V2} = M where the K* are guard
expressions and the V* can be any pattern; matching an empty map
is best done with when Map == #{}

– obtaining the value V associated to a key K that:

∗ is expected to exist: V = maps:get(K, MyMap) (generally could/should
be directly matched instead)

∗ may or may not exist: case maps:find(K, MyMap) of {ok,
V} -> ...; error -> ... end

– removing an entry: ShrunkMap = maps:remove(Key,Map)

• to detect in a guard whether a term is a map, there is no is_map/1 guard
available: map_size/1 will fail the guard if its argument is not a map; a
map includes its size in the header word, so map_size/1 is O(1); further-
more, the JIT will inline calls to map_size/1

• a queue can be seen as being augmented (with queue:in/2) on the right
("rear" of the queue), and shrunk (with queue:out/1) on the left ("front"
of the queue); for example, adding to an empty queue a then b, results,
when converting the resulting queue in a list, in [a,b]; extracting an
element of it returns a, and the remaining queue corresponds then to [b]

• a rule of thumb for naming in Erlang/OTP is that functions having size
in their name are O(1), while functions having length in their name are
O(N)

57

https://www.erlang.org/doc/reference_manual/expressions.html#map_expressions
https://www.erlang.org/doc/man/maps.html
https://www.erlang.org/doc/efficiency_guide/maps.html
https://www.erlang.org/doc/reference_manual/expressions.html#guard_expressions
https://www.erlang.org/doc/reference_manual/expressions.html#guard_expressions

• when converting a float to a string, to set the precision (the number of
digits after the decimal point) to P, use: "~.Pf"; for example, if P=5, we
have: "0.33333" = io_lib:format("~.5f", [1/3]).

• the lesser-known -- list subtraction operator returns a list that is a copy
of the first argument where, for each element in the second argument, the
first occurrence of this element (if any) is removed

• refer to the escape sequences, typically in order to specify characters like
"space" ($\s); $char is the notation to designate the ASCII value or
Unicode code-point of the character char (e.g. $A)

• the integer division operator is div; for example: 4 div 3 == 1

• see the always handy operator precedence and the various ways to handle
exceptions with try/catch; note that to catch all exceptions - i.e. those of
the throw class, but also of the exit and error classes, one may use: try
EXPR catch _:E -> ... (rather than just: try EXPR catch E -> ...)

• in guard expressions:

– because of side effects, no user-defined function is allowed in guards;
refer to the two tables listing all the BIFs supported in guards ex-
pressions (test or non-test BIFs)

– a guard will fail if it returns false or if it throws an exception
– to express an "and" operator, use a comma, i.e. ",", like in f(A, B,

C, D) when A =:= B, C =/= A + D ->

– to express an "or" operator, use a semi-colon, i.e. ";"
– andalso and orelse behave there as tests; they mostly convey the

same meaning as "," and ";" respectively, except that they shortcut
(they do not evaluate their second operand if the first one suffices),
that they do not catch exceptions as they happen (i.e. if a first
guard throws, any next guards will not be evaluated, and the whole
guard sequence will fail) and that their code is a little less effective -
but they can be nested inside guards (refer to this section for more
details)

• to handle binaries:

– a binary is a bit string whose number of bits is a multiple of 8 (it can
be represented as whole bytes)

– one may refer to this cheat sheet; see also an introduction to the
bit syntax (including bit string comprehensions) and its full refer-
ence, the Constructing and Matching Binaries section and the binary
module; see also our bin_utils module

– as a rule of thumb:
∗ even if it may seem a bit counter-intuitive, integers (the default

matching type) are handled at the bit level (e.g. A:16 means an
integer on two bytes), whereas binaries are handled at the byte
level (e.g. B:16/binary means 16 bytes) - indeed their bit-level
counterparts are bitstrings

58

https://www.erlang.org/doc/reference_manual/expressions.html#list-operationslist
https://www.erlang.org/doc/reference_manual/data_types.html#escape-sequences
https://www.erlang.org/doc/reference_manual/expressions.html#operator-precedence
https://www.erlang.org/doc/reference_manual/expressions.html#try
https://www.erlang.org/doc/reference_manual/expressions.html#try
https://www.erlang.org/doc/reference_manual/expressions.html#guard-expressions
https://www.erlang.org/doc/reference_manual/expressions.html#guard-expressions
https://learnyousomeerlang.com/syntax-in-functions#guards-guards
https://cheatography.com/fylke/cheat-sheets/erlang-binaries/
https://www.erlang.org/doc/programming_examples/bit_syntax.html
https://www.erlang.org/doc/programming_examples/bit_syntax.html
https://www.erlang.org/doc/reference_manual/expressions.html#bit-string-comprehensions
https://www.erlang.org/doc/reference_manual/expressions.html#bit_syntax
https://www.erlang.org/doc/reference_manual/expressions.html#bit_syntax
https://www.erlang.org/doc/efficiency_guide/binaryhandling.html
https://www.erlang.org/doc/man/binary.html
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/data-management/bin_utils.erl

∗ unlike lists, binaries are preferably built by appending on their
right

• typically for non-critical code (e.g. tests or temporary, debugging code):

– to avoid repeating a prefixing module, imports can be done, like in:
-import(lists, [map/2, foldl/3, foldr/3]).

– to suppress warnings/errors whenever elements are not used, specify
for:

∗ variables: -compile(nowarn_unused_vars).
∗ functions (rather than silencing them with an -export([f/1,
g/3])): -compile([{nowarn_unused_function, [{f,1}, {g,3}]}
]).

∗ types: they can be silenced with an -export_type([t1/0, t2/1])),
which is better (more selective) than -compile(nowarn_unused_type)
(unfortunately -compile([{nowarn_unused_type, [t1/0, t2/1]}
]). is not supported)

• in boolean expressions outside of guards:

– do not use and and or, which are strict boolean operators, not in-
tended for control; indeed their precedence is low (parentheses around
the conditions being then necessary, like in (A =:= B) and (C =/=
D)) and, more importantly, they do not short-circuit, i.e. in E = A
and B, B will be evaluated even if A is already known as false (so
is E), and in E = A or B, B will be evaluated even if A is already
known as true (so is E)

– prefer andalso and orelse, which are control operators; they short-
circuit, and their precedence is low enough to spare the need of extra
parentheses18

– so case (A =:= B) and (C =/= D) of shall become case A =:= B
andalso C =/= D of

– a common pattern is to use andalso in order to evaluate a target ex-
pression iff a boolean expression is true, to replace a longer expression
like:

case BOOLEAN_EXPR of

true ->
DO_SOMETHING;

false ->
ok

end

18Note that it is not the case of the and and or operators, whose precedence is higher than,
notably, the comparison operators.

For example a clause defined as f(I) when is_integer(I) and I >= 0 -> ... will never
be triggered as it is interpreted as f(I) when (is_integer(I) and I) >= 0 -> ..., and the
and guard will always fail as I is an integer here, not a boolean. So such a clause should be
defined as the (correct) f(I) when is_integer(I) andalso I >= 0 -> ... instead.

59

https://www.erlang.org/doc/efficiency_guide/binaryhandling.html#constructing-binaries
https://www.erlang.org/doc/efficiency_guide/binaryhandling.html#constructing-binaries
https://www.erlang.org/doc/reference_manual/modules#pre-defined-module-attributes
https://www.erlang.org/doc/reference_manual/expressions.html#operator-precedence

with the equivalent (provided BOOLEAN_EXPR evaluates to either true or
false - otherwise a bad argument exception will be thrown) yet shorter: BOOLEAN_EXPR
andalso DO_SOMETHING; for example: [...], OSName =:= linux andalso fix_for_linux(),
[...]

Similarly, orelse can be used to evaluate a target expression iff a boolean
expression is false, to replace a longer expression like:

case BOOLEAN_EXPR of

true ->
ok;

false ->
DO_SOMETHING;

end

with: BOOLEAN_EXPR orelse DO_SOMETHING; for example: [...], file_utils:exists("/etc/passwd")
orelse throw(no_password_file), [...]

In both andalso / orelse cases, the DO_SOMETHING branch may be a single
expression, or a sequence thereof (i.e. a body), in which case a begin/end block
may be of use, like in:

file_utils:exists("/etc/passwd") orelse
begin

trace_utils:notice("No /etc/password found."),
throw(no_password_file)

end

Similarly, taking into account the aforementioned precedences, Count =:=
ExpectedCount orelse throw({invalid_count, Count}) will perform the ex-
pected check.

Be wary of not having precedences wrong, lest bugs are introduced like the
one in:

MaybeListenerPid =:= undefined orelse
MaybeListenerPid ! {onDeserialisation, [self(), FinalUserData]}

(orelse having more priority than !, parentheses shall be added, otherwise,
if having a PID, the message will actually be sent to any process that would be
registered as true)

For the record, an alternative is [f(...) || BoolCondition], like in: _
= [put(’$ancestors’, Ancestors) || Shell =/= {}] (in group.erl).

Some of these elements have been adapted from the Wings3D coding guide-
lines.

Erlang Resources
• the reference is the Erlang official website

• for teaching purpose, we would dearly recommend Learn You Some Erlang
for Great Good!; many other high-quality Erlang books exist as well; one
may also check the Erlang track on Exercism

60

https://www.erlang.org/doc/reference_manual/expressions.html#operator-precedence
https://github.com/dgud/wings/blob/master/CodingGuidelines
https://github.com/dgud/wings/blob/master/CodingGuidelines
http://erlang.org
https://learnyousomeerlang.com/content
https://learnyousomeerlang.com/content
https://erlangforums.com/c/erlang-learning-resources/8
https://exercism.org/tracks/erlang

• in addition to the module index mentioned in the Erlang Installation sec-
tion, using the online search and/or Erldocs may also be convenient

• the Erlang community is known to be pleasant and welcoming to new-
comers; one may visit the Erlang forums, which complement the erlang-
questions mailing list (use this mirror in order to search through the past
messages of this list)

• for those who are interested in parse transforms (the Erlang way of doing
metaprogramming), the section about The Abstract Format is essential
(despite not being well known)

• to better understand the inner workings of the VM: The Erlang Runtime
System, a.k.a. "the BEAM book", by Erik Stenman

• BEAM Wisdoms, by Dmytro Lytovchenko

61

https://erlang.org/doc/search/
https://erldocs.com/
https://www.erlang.org/community
https://erlangforums.com/
https://erlang.org/pipermail/erlang-questions/
https://erlang.org/pipermail/erlang-questions/
https://groups.google.com/g/erlang-programming
https://www.erlang.org/doc/apps/erts/absform.html
https://blog.stenmans.org/theBeamBook/
https://blog.stenmans.org/theBeamBook/
http://beam-wisdoms.clau.se/en/latest

Rust
Organisation: Copyright (C) 2024-2025 Olivier Boudeville
Contact: about (dash) howtos (at) esperide (dot) com
Creation date: Tuesday, March 12, 2024
Lastly updated: Wednesday, March 19, 2025

Table of Contents
Overview . 58
Documentation . 58
Installation . 58
Examples . 59

Most Basic One . 59
Related Tools . 59

Included with rustup . 59
External Ecosystem . 60

More Advanced Topics 60
Mode of Operation . 60
Quick Facts . 61
Language Bindings . 61
Short Hints . 61

Optimizing for native CPU platform 61
Accelerating Builds . 61

Micro-Cheat Sheet . 61
Rust Resources . 61

Overview
Rust is a multi-paradigm, general-purpose, efficient, safe language available as
free software; see its official website for more details.

Documentation
One should read the official Rust book (The Rust Programming Language),
which is clear and well written.

See also:

• Rust on Arch Linux

Installation
Even if done here in the context of Arch Linux, for the procedure that we
recommend the actual distribution does not matter.

As we intend to develop (rather than just running or installing Rust soft-
ware), we prefer relying on the Rustup toolchain manager, so that multiple
toolchains, for multiple platforms and architectures, can be used.

Rather than using pacman to install its rustup package, we prefer going the
more standard Rust way. One should follow the official Rust guidelines for that;
here is our corresponding procedure:

62

https://en.wikipedia.org/wiki/Rust_(programming_language)
https://www.rust-lang.org/
https://doc.rust-lang.org/stable/book/
https://wiki.archlinux.org/title/rust
https://rustup.rs/

$ curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.rs > install-rustup.sh
Inspect install-rustup.sh before running it.
$ sh install-rustup.sh

From now the rustc compiler and the Cargo package manager are available
on the system, from one’s account (in the ~/.rustup and ~/.cargo trees respec-
tively). All Rust-related commands are then be available from ~/.cargo/bin.

One may prefer customising the installation and avoiding that one’s shell
configuration is automatically modified; then it is just a matter of editing typi-
cally one’s ~/.bashrc or related by oneself and adding there export PATH="${HOME}/.cargo/bin:${PATH}"
(another option is to add . ${HOME}/.cargo/env instead).

Then updating the current shell accordingly (e.g. . ~/.bashrc) allows to
check that for example rustc can now be executed as intended.

As Rust does not perform the linking by itself, a linker (typically provided
by gcc) must be available.

Afterwards Rust may be updated thanks to rustup update.
Should some day Rust and rustup have to be uninstalled, run rustup self

uninstall.

Examples
Most Basic One

In ~/hello.rs:

fn main() {
println!("Hello from Ceylan-HOWTOs!");

}

One may notice the use of a macro (! suffix), and that most lines of Rust
code end with a semicolon (;).

To be compiled and linked with rustc hello.rs and run with ./hello;
yields as expected: Hello from Ceylan-HOWTOs!.

This executable occupies 3.7MB (!); more information:

$ file hello
hello: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
BuildID[sha1]=c77ef3f032c2f1961866e0889d54d6342a9e3554, for GNU/Linux 4.4.0, with debug_info, not stripped

No need to devise one’s GNU make automatic rules - cargo will do best.

Related Tools
Included with rustup

Cargo Cargo is the Rust integrated dependency manager and build tool.
In Rust, a package of code is referred to as a crate. So Cargo is the build

system and package manager of choice to access Rust community’s crate registry.
More precisely, Cargo allows installing crates and publishing ones, so that

Rust projects can declare their various dependencies and so that their build is
repeatable. See also the Cargo guide.

63

https://crates.io/
https://doc.rust-lang.org/cargo/guide/

For its configuration, Cargo relies on a Cargo.toml manifest file, placed at
the root of the tree of the package it applies to.

Its format is named TOML (Tom’s Obvious, Minimal Language), and the
various keys that it introduces are listed here.

Rustfmt Rustfmt is the source-formatting tool of choice: it formats Rust code
according to the official style guidelines19.

We found very useful that a stable, conventional formatting exists, and de-
cided from the start to systematically use it. This allows a great standardization
of sources, for easier readings and simplified merges.

Rustfmt should be readily available with rustup; otherwise execute rustup
component add rustfmt.

External Ecosystem

rust-analyzer This is a Language Server Protocol implementation for Rust,
typically used by IDEs.

There are multiple options to install it; rather than installing as an (OS)
package, we prefer once again using rustup, with: rustup component add
rust-analyzer.

Once installed, running rust-analyzer --version should switch from:

error: Unknown binary ’rust-analyzer’ in official toolchain ’stable-x86_64-unknown-linux-gnu’.

to something like:

rust-analyzer 1.76.0 (07dca48 2024-02-04)

As rust-analyzer will need the Rust source code, the latter can be directly
installed with: rustup component add rust-src.

Using Emacs with Rust The Emacs light-weight rust-mode can be used,
yet rustic (which is based on rust-mode) provides additional features that we
like.

A prerequisite thereof is rust-analyzer (and of course a recent Emacs).

Base Approach One may rely on straight.el to manage one’s Emacs packages
(as a replacement for the Emacs now built-in package.el), so, provided that
the straight.el bases are respected, having rustic is just a matter of adding,
typically in one’s ~/.emacs.d/init.el, a (straight-use-package ’rustic)
line.

More Involved Approach We prefer installing and configuring rustic with
use-package rustic, as done in Robert Krahn’s page; see our complete init.el
for that.

Then opening a Rust source file (e.g. hello.rs) should automatically exhibit
syntax highlighting and the Rustic mode.

19e.g. indent with four spaces - not tabs; place the curly braces according to this convention,
etc.

64

https://doc.rust-lang.org/cargo/reference/manifest.html
https://github.com/rust-lang/rustfmt
https://rust-analyzer.github.io/manual.html#installation
https://github.com/rust-lang/rust-mode
https://github.com/brotzeit/rustic
https://github.com/radian-software/straight.el
https://github.com/radian-software/straight.el?tab=readme-ov-file#getting-started
https://robert.kra.hn/posts/rust-emacs-setup/
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init.el

Notably, saving a Rust source file will automatically format it with Rustfmt,
which is neat.

See also:

• the WikEmacs page

• the Robert Krahn’s page about it

More Advanced Topics

Mode of Operation
Rust relies on LLVM to generate its code, in order to be platform and hardware-
agnostic, and to achieve best performance.

Quick Facts
• Rust is well suited for embedded development, because it can target

many platforms (thanks to LLVM) and can be as low-level as wanted;
notably using #![no_std] allows to benefit from the Rust Core Library
without relying on the Rust Standard Library, for smaller binary sizes and
possibly improved performance

• thanks to the use of rustup and its support of toolchains, cross-compiling
is rather easy; for instance, to install Rust using the stable channel for
Windows, using the GNU Compiler, just execute rustup toolchain install
stable-x86_64-pc-windows-gnu

Language Bindings

Short Hints
Optimizing for native CPU platform

The current target platform is given by rustup toolchain list; in our case
it is stable-x86_64-unknown-linux-gnu.

Then, to request Cargo to always compile code optimized for the native CPU
platform, one may add in ~/.cargo/config:

[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=native"]

Note that the resulting binary is expected to depend on the precise local CPU
and thus should not be distributed - lest it cannot be run on other computers.

Accelerating Builds

A shared compilation cache - specifically sccache may be used to speed up builds.
See this section for more details.

65

https://github.com/rust-lang/rustfmt
https://wikemacs.org/wiki/Rust
https://robert.kra.hn/posts/rust-emacs-setup/
https://github.com/mozilla/sccache
https://wiki.archlinux.org/title/rust#sccache

Micro-Cheat Sheet
• to get Rust (compiler) version: rustc -V; for cargo: cargo --version

• to create a binary (application) my_project package: cargo new my_project;
Git files will be generated iff not already in a clone

Rust Resources
• the reference is the Rust official website

66

http://erlang.org

About 3D
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Wednesday, March 19, 2025

Table of Contents
Cross-Platform Game Engines 62

Godot . 62
Installation . 62
Use . 62
Assets . 63
Sources of Godot-related Information 63

Unreal Engine . 63
Unreal Assets . 64

Unity3D . 64
Installation . 64
Configuration . 65
Running Unity . 65
Troubleshooting . 65
Unity Assets . 65

3D Data . 66
File Formats . 66

glTF . 66
Collada . 66
FBX, OBJ, etc. 67
In General . 67

Conversions . 67
Recommended Option: Relying on Blender 67
Workaround #1: Using Autodesk FBX Converter . 67
Workaround #2: Relying on Unity 68

Examples of 3D Content . 68
Engine-related Assets . 69
Asset Providers . 69

Modelling Software . 71
Blender . 71
Wings3D . 71

Other Tools . 71
Draco . 71
The Compressonator . 72
F3D . 72
Mikktspace . 72
Mixamo . 72

OpenGL Corner . 73
Conventions . 73

67

Basics . 73
Steps for OpenGL Rendering 77
Transformations . 77
Camera . 78
OpenGL Hints . 79
Mini OpenGL Glossary 80

Coordinate Systems . 82
Coordinate Systems In 2D 82
Coordinate Systems In 3D 83
Computing Transition Matrices 86

Main Matrices . 90
Shaders . 90

A Programmable Pipeline 90
Parallelism in the Pipeline 91
Six Types of GLSL Shaders 91
Runtime Build . 91
Implementing a Shader 91
Communicating with Shaders 92
Using Multiple Shaders of the Same Type 95
Troubleshooting Shaders 95
Examples of Shaders 95
Managing Spatial Transformations 95

More Advanced Topics . 96
Shadows . 96
Reference GLSL Compiler 96

Sources of Information . 96
Operating System Support for 3D 97

Testing . 97
Troubleshooting . 98

Minor Topics . 98
Camera Navigation Conventions 98

3D-Related Mini-Glossary 98

As usual, these information pertain to a GNU/Linux perspective.

Cross-Platform Game Engines

The big three are Godot, Unreal Engine and Unity3D20.

Godot

Godot is our personal favorite engine, notably because it is free software (re-
leased under the very permissive MIT license).

See its official website and its asset library.
Godot (version 3.4.1) will not be able to load FBX files that reference formats

like PSD or TIF and/or of older versions (e.g. FBX 6.1). See for that our section
regarding format conversions.

20Others could be considered, like Cocos Creator, an open-source engine using TypeScript
and WebGL.

68

https://en.wikipedia.org/wiki/Godot_(game_engine)
https://en.wikipedia.org/wiki/Unreal_Engine
https://en.wikipedia.org/wiki/Godot_(game_engine)
https://godotengine.org/license
https://godotengine.org/license
https://godotengine.org/
https://godotengine.org/asset-library/asset
https://www.cocos.com/en/creator

Installation On Arch Linux, one may simply use pacman -Sy godot.
Or just, for maximum control, one may instead directly download the GNU/Linux

version from the Godot official website.
If planning to be able to develop in C# in addition to GDScript (refer

to our Scripting Language section), prefer the .NET version (as opposed to the
Standard one), i.e. the ".NET (x86_64)" version - provided that the support for
.NET is already secured, either based on the Microsoft .NET SDK or, possibly
better, on the Mono SDK.

The installation procedure that we prefer can be done automatically thanks
to our install-godot.sh script.

Use

Scripting Language Users of the Godot API may develop notably in
GDScript (extension: *.gd) and/or in C# (extension: *.cs) and/or in C++.

See this comparison - knowing that languages can be mixed and matched.
We prefer using C# to GDScript or C++, as:

• C# is statically typed (GDScript is dynamically typed, with implicit casts)

• C# is widely-used / general-purpose (and Unity supports it as well), as
opposed to GDScript

• C# is C++-inspired (yet offers a safer model, notably in terms of life-cycle
management), whereas GDScript is Python-inspired21; so for example C#
does not rely on indentation to define clauses

Development Hints

• all scripts are classes, which are by default anonymous

• before releasing one’s game, it is certainly better to protect it thanks to
some level of encryption (see this thread)

Important Paths A configuration tree lies in .config/godot, a cache
tree in ~/.cache/godot.

Logs Godot logs are stored per-project; e.g. ~/.local/share/godot/app_userdata/my-test-project/logs/godot.log;
past log files are kept once timestamped. They tend not to have interesting con-
tent.

21With additionally quite many differences. For example, with GDScript, variables are
typed, like in var my_msg : String = ’Hello!’. So my_msg = 7 is to result in a (runtime)
error. Python lists are Godot arrays. None is null. A switch-like operator (match) exists, etc.

69

https://godotengine.org/download/linux/
https://dotnet.microsoft.com/download
https://www.mono-project.com/download/stable/
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/install-godot.sh
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_differences.html
https://docs.godotengine.org/en/stable/tutorials/scripting/cross_language_scripting.html#doc-cross-language-scripting
https://www.reddit.com/r/godot/comments/1je90av/how_to_protect_your_godot_game_from_being_stolen/

Assets The official Godot Asset Library, whose assets are at least mostly
available through the rather permissive MIT licence, coexists with (probably too
many) unofficial ones, like Godot A.L. (AGPLv3 license), Godot Asset Store,
GodotAssets, etc.

For obvious reasons, many of the current open source assets are of a signifi-
cantly lower quality than their non-Godot commercial counterparts. We believe
than, until Godot-related assets progress (either as open-source or commercial
ones), as soon as a game is a bit ambitious, relying on the asset stores of the
other engines (see Engine-related Assets) and/or on asset providers is a better
option.

Sources of Godot-related Information

• the official Godot Engine video channel

• the GDQuest channel, offering a large number of Godot tutorials covering
many topics

Unreal Engine

Another contender is the Unreal Engine, a C++ game engine developed by Epic
Games; we have not used it yet.

The Unreal Engine 5 brings new features that may be of interest, including
a fully dynamic global illumination and reflection system (Lumen, not requiring
baked lightmaps anymore), a virtualized geometry system (Nanite, simplifying
detailed geometries on the fly) and a quality 2D/3D asset library (the Quixel
Megascans library, obtained from real-world scans).

Unreal does not offer a scripting language anymore, user developments have
to be done in C++ (beyond Blueprints Visual Scripting).

Its licence is meant to induce costs only when making large-enough profits;
more precisely, a 5% royalty is due only if you are distributing an off-the-shelf
product that incorporates Unreal Engine code (such as a game) and the lifetime
gross revenue from that product exceeds $1 million USD (the first $1 million
remaining royalty-exempt); in case of large success, it may be a costlier licence
than Unity.

With an Unreal user account, the sources of the engine (in its latest stable
version, 5) can be examined on Github (so it is open source - yet not free
software).

See its official website.

Unreal Assets Purchased assets from the Unreal marketplace may be used
in one’s own shipped products (source) and apparently at least usually no re-
strictive terms apply.

Assets not created by Epic Games can be used in other engines unless oth-
erwise specified (source; see also this thread).

Note that parts of the content of assets will be Unreal-specific (*.uasset,
*.umap, etc.), like scripts. Yet technically many can be adapted to other engines
(see for example Exporting from Unreal Engine to Godot).

70

https://godotengine.org/asset-library/asset
https://godotassetlibrary.com/
https://godotassetstore.org/
https://godotassets.io/
https://www.youtube.com/@GodotEngineOfficial
https://www.youtube.com/@Gdquest/
https://en.wikipedia.org/wiki/Unreal_Engine
https://docs.unrealengine.com/5.0/en-US/lumen-global-illumination-and-reflections-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://www.unrealengine.com/en-US/features/quixel-megascans
https://docs.unrealengine.com/5.0/en-US/unreal-engine-programming-and-scripting/
https://www.unrealengine.com/en-US/faq
https://www.unrealengine.com/en-US/ue-on-github
https://www.unrealengine.com
https://www.unrealengine.com/marketplace/en-US/store
https://marketplacehelp.epicgames.com/s/article/How-can-I-use-the-products-I-ve-purchased-from-the-Marketplace-or-Learn-Tab?language=en_US
https://marketplacehelp.epicgames.com/s/article/Can-I-use-these-products-in-other-gaming-engines-like-Source-or-Unity?language=en_US
https://www.reddit.com/r/godot/comments/bjsfoz/can_i_use_unreal_engine_assets_in_godot/
https://www.youtube.com/watch?v=fhv_cpYQIqc

Unity3D

Unity is most probably still the most popular cross-platform game engine, de-
spite recent controversies.

Regarding the licensing of the engine, various plans apply (warning: they
may have changed since this writing), depending notably on whether one sub-
scribes as an individual or a team, and on one’s profile, revenue and funding;
the general idea is not taking royalties, but flat, per seat yearly fees increasing
with the organisation "size" (typically in the $400-$1800 range, per seat).

See its official website and its asset store.
Unity may be installed at least in order to access its asset store, knowing

that apparently an asset purchased in this store may be used with any game
engine of choice. Indeed, for the standard licence, it is stipulated in the EULA
legal terms that:

Licensor grants to the END-USER a non-exclusive, worldwide, and perpetual
license to the Asset to integrate Assets only as incorporated and embedded com-
ponents of electronic games and interactive media and distribute such electronic
game and interactive media.

So, in legal terms, an asset could be bought in the Unity Asset Store and used
in Godot, for example - provided that its content can be used there technically
without too much effort/constraints (this may happen due to prefabs, specific
animations, materials or shaders, conventions in use, etc.).

Installation Unity shall now be obtained thanks to the Unity Hub.
On Arch Linux it is available through the AUR, as an AppImage; one may

thus use: yay -Sy unityhub.
Then, when running (as a non-privileged user) unityhub, a Unity account

will be needed, then a licence, then a Unity release will have to be added in
order to have it downloaded and installed for good, covering the selected target
platforms (e.g. GNU/Linux and Windows "Build Supports").

We rely here on the Unity version 2021.2.7f1.
Additional information: Unity3D on Arch.

Configuration Configuring Unity so that its interface (mouse, keyboard bind-
ings) behave like, for example, the one of Blender, is not natively supported.

Running Unity Just execute unityhub, which requires signing up and acti-
vating a licence.

Troubleshooting The log files are stored in ~/.config/unity3d:

• Unity Editor: Editor.log (the most interesting one)

• Unity Package Manager: upm.log

• Unity Licensing client: Unity.Licensing.Client.log

If the editor is stuck (e.g. when importing an asset), one may use as a last
resort kill-unity3d.sh.

In term of persistent state, beyond the project trees themselves, there are:

71

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://store.unity.com/#plans-individual
https://unity.com/
https://assetstore.unity.com/
https://unity3d.com/legal/as_terms
https://unity3d.com/legal/as_terms
https://aur.archlinux.org/packages/unityhub/
https://en.wikipedia.org/wiki/AppImage
https://wiki.archlinux.org/title/Unity3D
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/kill-unity3d.sh

• ~/.config/UnityHub/ and ~/.local/share/UnityHub/

• ~/.config/unity3d/ and ~/.local/share/unity3d/

(nothing in ~/.cache apparently)

Unity Assets Once ordered through the Unity Asset Store, assets can be
downloaded through the Window -> Package Manager menu, by replacing, in
the top Packages drop-down, the In Project entry by the My Assets one.
After having selected an asset, use the Download button at the bottom-right of
the screen.

Then, to gain access to such downloaded assets, of course the simplest
approach is to use the Unity editor; this is done by creating a project (e.g.
MyProject), selecting the aforementioned menu option (just above), then click-
ing on Import and selecting the relevant content that will end up in clear form in
your project, i.e. in the filesystem of the operating system with their actual name
and content, for example in MyProject/Assets/CorrespondingAssetProvider/AssetName.
Unfortunately we experienced reproducible freezes when importing some re-
sources.

Yet such Unity packages, once downloaded (whether or not they have been
imported in projects afterwards) are just files that are stored typically in the
~/.local/share/unity3d/Asset Store-5.x directory and whose extension is
.unitypackage.

Such files are actually .tar.gz archives, and thus their content can be listed
thanks to:

$ tar tvzf Foobar.unitypackage

Inside such archives, each individual package resource is located in a di-
rectory whose name is probably akin to the checksum of this resource (e.g.
167e85f3d750117459ff6199b79166fd)22; such directory generally contains at
least 3 files:

• asset: the resource itself, renamed to that unique checksum name, yet
containing its exact original content (e.g. the one of a Targa image)

• asset.meta: the metadata about that asset (file format, identifier, times-
tamp, type-specific settings, etc.), as an ASCII, YAML-like, text

• pathname: the path of that asset in the package "virtual" tree (e.g.
Assets/Foo/Textures/baz.tga)

When applicable, a preview.png file may also exist.
Some types of content are Unity-specific and thus may not transpose (at least

directly) to another game engine. This is the case for example for materials or
prefabs (whose file format is relatively simple, based on YAML 1.1).

Tools like AssetStudio (probably Windows-only) strive to automate most of
the process of exploring, extracting and exporting Unity assets.

Meshes are typically in the FBX (proprietary) file format, that can never-
theless be imported in Blender and converted to other file formats (e.g. glTF
2.0); see blender import and blender convert for that.

22Yet no checksum tool among md5sum, sha1sum, sha256sum, sha512sum, shasum, sha224sum,
sha384sum seems to correspond; it must a be a different, possibly custom, checksum.

72

https://en.wikipedia.org/wiki/YAML
https://github.com/Perfare/AssetStudio
https://en.wikipedia.org/wiki/FBX

3D Data
File Formats

They are designed to store 3D content (scenes, nodes, vertices, normals, meshes,
textures, materials, animations, skins, cameras, lights, etc.).

glTF We prefer relying on the open, well-specified, modern glTF 2.0 format
in order to perform import/export operations.

It comes in two forms:

• either as *.gltf when JSON-based, possibly embedding the actual data
(vertices, normals, textures, etc.) as ASCII base64-encoded content, or
referencing external files

• or as *.glb when binary; this is the most compact form, and the one that
we recommend for actual releases

See also the glTF 2.0 quick reference guide, the related section of Godot and
this standard viewer of predefined glTF samples.

This (generic) online glTF viewer proved lightweight and convenient, notably
because it displays errors, warnings and information regarding the glTF data
that it decodes.

Collada The second best choice that we see is Collada (*.dae files), an XML-
based counterpart (open as well, yet older and with less validating facilities) to
glTF.

FBX, OBJ, etc. Often, assets can be found as FBX of OBJ files and thus may
have to be converted (typically to glTF), which is never a riskless task. FBX
comes in two flavours: text-based (ASCII) or binary; see this retro-specification
for more information.

In General Refer to blender import in order to handle the most common 3D
file formats, and the next section about conversions.

The file command is able to report the version of at least some formats;
for example:

Means FBX 7.3:
$ file foobar.fbx
foobar.fbx: Kaydara FBX model, version 7300

Too often, some tool will not be able to load a file and will fail to properly
report why. When suspecting that a binary file (e.g. a FBX one) references ex-
ternal content either missing or in an unsupported format (e.g. PSD or TIFF?),
one may peek at their content without any dedicated tool, directly from a ter-
minal, like in:

$ strings my_asset.fbx | sort | uniq | grep ’\.’

This should list, among other elements, the paths that such a binary file is
embedding.

73

https://en.wikipedia.org/wiki/GlTF
https://en.wikipedia.org/wiki/Base64
https://www.khronos.org/files/gltf20-reference-guide.pdf
https://docs.godotengine.org/en/stable/getting_started/workflow/assets/importing_scenes.html
https://github.khronos.org/glTF-Sample-Viewer-Release/
https://gltf-viewer.donmccurdy.com/
https://en.wikipedia.org/wiki/COLLADA
https://en.wikipedia.org/wiki/FBX
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://code.blender.org/2013/08/fbx-binary-file-format-specification/

Conversions

Due to the larger number of 3D file formats and the role of commercial software,
interoperability regarding 3D content is poor and depends on many versions (of
tools and formats).

Recommended Option: Relying on Blender Using blender import is the
primary solution that we see: a content, once imported in Blender, can be
exported in any of the supported formats.

Yet this operation may fail, for example on "older" FBX files, whose FBX
version (e.g. 6.1) is not supported by Blender ("Version 6100 unsupported, must
be 7100 or later") or by other tools such as Godot. See also the Media Formats
supported by Blender.

Another option of interest is to use Godot’s FBX2glTF command-line tool.

Workaround #1: Using Autodesk FBX Converter The simpler ap-
proach seems to download the (free) Autodesk FBX Converter and to use
wine to run it on GNU/Linux. Just install then this converter with: wine
fbx20133_converter_win_x64.exe.

A convenient alias (based on default settings, typically to be put in one’s
~/.bashrc) can then be defined to run it:

$ alias fbx-converter-ui="$HOME/.wine/drive_c/Program\ Files/Autodesk/FBX/FBX\ Converter/2013.3/FBXConverterUI.exe 2>/dev/null &"

Conversions may take place from, for example, FBX 6.1 (also: 3DS, DAE,
DXF, OBJ) to a FBX version in: 2006, 2009, 2010, 2011, 2013 (i.e. 7.3 - of
course the most interesting one here), but also DXF, OBJ and Collada, with
various settings (embedded media, binary/ASCII mode, etc.).

An even better option is to use directly the command-line tool bin/FbxConverter.exe,
which the previous user interface actually executes. Use its /? option to get
help, with interesting information.

For example, to update a file in a presumably older FBX into a 7.3 one (that
Blender can import):

$ cd ~/.wine/drive_c/Program\ Files/Autodesk/FBX/FBX\ Converter/2013.3/bin
$ FbxConverter.exe My-legacy.FBX newer.fbx /v /sffFBX /dffFBX /e /f201300

We devised the update-fbx.sh script to automate such an in-place FBX up-
date.

Unfortunately, at least on one FBX sample taken from a Unity package, if
the mesh could be imported in Blender, textures and materials were not (having
checked Embed media in the converter or not).

Workaround #2: Relying on Unity Here the principle is to import a
content in Unity (the same could probably be done with Godot), and to export
it from there.

Unity does not allow to export for example FBX natively, however a package
for that is provided. It shall be installed first, once per project.

74

https://docs.blender.org/manual/en/latest/files/media/index.html
https://github.com/godotengine/FBX2glTF
https://images.autodesk.com/adsk/files/fbx20133_converter_win_x64.exe
GNULinux.html#wine
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/update-fbx.sh

One shall select in the menu Window -> Package Manager, ensure that the
entry Packages: points to Unity Registry, and search for FBX Exporter,
then install it (bottom right button).

Afterwards, in the GameObject menu, an Export to FBX option will be
available. Select the Binary export format (not ASCII) if wanting to be com-
pliant with Blender.

Examples of 3D Content

Here are a few samples of 3D content (useful for testing):

• glTF, notably glTF 2.0; direct: .gltf Buggy example, .glb Fish example
(also: a simple cube)

• DAE; direct: Duck example (also: a simple cube)

• FBX; direct: Stylized character

• OBJ

• IFC; direct: Basic house (requires the BlenderBIM add-on for BIM sup-
port in Blender)

Engine-related Assets

Technically, and also legally, assets obtained in the context of any of these
engines can be at least partially exported and adapted for re-use in other engines.

Textures may be exported as PNG, animations in the FBX (proprietary) file
format, that can nevertheless be imported in Blender and converted to other
file formats (e.g. glTF 2.0); see blender import and blender convert for that.

Scripts and alike (Nodes, Prefabs, Blueprints) are engine-specific, yet may
be recreated or at least translated to some extent.

Asset Providers

Usually, for one’s creation, much multimedia artwork has to be secured: typ-
ically graphical assets (e.g. 2D/3D geometries, animations, textures) and/or
audio ones (e.g. music, sounds, speech syntheses, special effects).

Instead of creating such content by oneself (not enough time/interest/skill?),
it may be more relevant to rely on specialised third-parties.

Hiring a professional or a freelance is then an option. This is of course
relatively expensive, involves more efforts (to define requirements and review
the results), longer, but it is supposed to provide exactly the artwork that one
would like.

Another option is to rely on specialised third-party providers who sell non-
exclusive licences for the content that they offer.

These providers can be either direct content producers (companies with
staffs of modellers), or asset aggregators (marketplaces that federate the of-
fers of many producers of any size) that are often created in link to a given
multimedia engine. An interesting point is that assets purchased in these stores
generally can be used in any technical context, hence are not meant to be bound
to the corresponding engine.

75

https://github.com/KhronosGroup/glTF-Sample-Models
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0
https://github.com/KhronosGroup/glTF-Sample-Models/raw/master/2.0/Buggy/glTF-Embedded/Buggy.gltf
https://github.com/KhronosGroup/glTF-Sample-Models/raw/master/2.0/BarramundiFish/glTF-Binary/BarramundiFish.glb
http://paulbourke.net/dataformats/glTF/cube.txt
https://github.com/assimp/assimp/tree/master/test/models/Collada
https://github.com/assimp/assimp/raw/master/test/models/Collada/duck.dae
https://gist.github.com/wtsnz/bfa11c40e04594b260255b5dc7956f26
https://free3d.com/dl-files.php?p=5671208f26be8b5e7b8b4567&f=4
https://github.com/armory3d/armorpaint_samples/raw/master/sample.fbx
https://free3d.com/dl-files.php?p=51a50c9b46e0daad6a99bb49&f=0
https://github.com/andrewisen/bim-whale-ifc-samples
https://github.com/andrewisen/bim-whale-ifc-samples/raw/main/BasicHouse/IFC/BasicHouse.ifc
https://blenderbim.org/download.html
https://en.wikipedia.org/wiki/FBX

Nowadays, much content is available, in terms of theme/setting (e.g. Me-
dieval, Science-Fiction), of nature (e.g. characters, environments, vehicles), etc.
and the overall quality/price ratio seems rather good.

The main advantages of these marketplaces is that:

• they favor the competition between content providers: the clients can
easily compare assets and share their opinion about them

• they generalised simple, standard, unobtrusive licensing terms; e.g. roy-
alty free, allowing content to be used as they are or in a modified form, not
limited by types of usage, number of distributed copies, duration of use,
number of countries addressed, etc.; the general rule is that much freedom
is left to the asset purchasers provided that they use such assets for their
own projects (rather than for example selling the artwork as they are)

The main content aggregators that we spotted are (roughly by decreasing
order of interest, based on our limited experience):

• the Unity Asset Store, already discussed in the Unity Assets section; web-
sites like this one allow to track the significant discounts that are regularly
made on assets

• the UE Marketplace, i.e. the store associated to the Unreal Engine; in
terms of licensing and uses (see also this section):

– this article states that When customers purchase Marketplace prod-
ucts, they get a non-exclusive, worldwide, perpetual license to down-
load, use, copy, post, modify, promote, license, sell, publicly perform,
publicly display, digitally perform, distribute, or transmit your prod-
uct’s content for personal, promotional, and/or commercial purposes.
Distribution of products via the Marketplace is not a sale of the con-
tent but the granting of digital rights to the customer.

– this one states that Any Marketplace products that have not been
created by Epic Games can be used in other engines unless otherwise
specified.

– this one states that All products sold on the Marketplace are licensed
to the customer (who may be either an individual or company) for
the lifetime right to use the content in developing an unlimited num-
ber of products and in shipping those products. The customer is also
licensed to make the content available to employees and contractors
for the sole purpose of contributing to products controlled by the cus-
tomer.

• itch.io

• Turbosquid

• Free3D

• CGtrader

• ArtStation

76

https://assetstore.unity.com/
https://www.gameassetdeals.com/
https://www.unrealengine.com/marketplace/en-US/store
https://marketplacehelp.epicgames.com/s/article/What-is-the-customer-getting-when-they-purchase-my-product?language=en_US
https://marketplacehelp.epicgames.com/s/article/Can-I-use-these-products-in-other-gaming-engines-like-Source-or-Unity?language=en_US
https://marketplacehelp.epicgames.com/s/article/What-can-a-customer-do-with-my-product?language=en_US
https://itch.io/game-assets
https://www.turbosquid.com/Search/3D-Models
https://free3d.com/3d-models/
https://www.cgtrader.com/
https://www.artstation.com/marketplace/game-dev/assets

• Sketchfab

• 3DRT

• Reallusion

• Arteria3D

• the GameDev Market (GDM)

• the Game Creator Store

Many asset providers organise interesting discount offers (at least -50% on
a selection of assets, sometimes even more for limited quantities) for the Black
Friday (hence end of November) or for Christmas (hence mid-December till the
first days of January).

Modelling Software
Blender

Blender is a very powerful free software 3D toolset.
Blender (version 3.0.0) can import FBX files of version at least 7.1 ("7100").

See for that our section regarding format conversions.
We recommend the use of our Blender shell scripts in order to:

• import conveniently various file formats in Blender, with blender-import.sh

• convert directly on the command-line various file formats (still thanks to
a non-interactive Blender), with blender-convert.sh

Wings3D

Wings3D is a nice, Erlang-based, free software, advanced subdivision modeler23,
available for GNU/Linux, Windows and Mac OS X. Wings3D relies on OpenGL.

It can be installed on Arch Linux, from the AUR, as wings3d; one can also
rely on our Wings3D shell scripts in order to install and/or execute it.

We prefer using the Blender-like camera navigation conventions, which can
be set in Wings3D by selecting Edit -> Preferences -> Camera -> Camera
Mode to Blender.

See also:

• its official website

• its development project

• its build instructions for UNIX-like systems

23As opposed to renderer ; yet Wings3D integrates an OpenCL renderer as well, deriving
from LuxCoreRender, an open-source Physically Based Renderer (it simulates the flow of light
according to physical equations, thus producing realistic images of photographic quality).

77

https://sketchfab.com/tags/asset-store
https://3drt.com/store/
https://marketplace.reallusion.com/
https://arteria3d.myshopify.com/
https://www.gamedevmarket.net/
https://tgcstore.net/
https://en.wikipedia.org/wiki/Blender_(software)
http://hull.esperide.org#blender
https://en.wikipedia.org/wiki/Wings_3D
https://hull.esperide.org/#wings3d
http://www.wings3d.com/
https://github.com/dgud/wings
https://github.com/dgud/wings/blob/master/BUILD.unix
https://luxcorerender.org/

Other Tools
Draco

Draco is an open-source library for compressing and decompressing 3D geometric
meshes and point clouds.

It is intended to improve the storage and transmission of 3D graphics; it can
be used with glTF, with Blender, with Compressonator, or separately.

A draco AUR package exists, and results notably in creating the /usr/lib/libdraco.so
shared library file.

Even once this package is installed, when Blender exports a mesh, a message
like the following is displayed:

’/usr/bin/3.0/python/lib/python3.10/site-packages/libextern_draco.so’ does
not exist, draco mesh compression not available, please add it or create
environment variable BLENDER_EXTERN_DRACO_LIBRARY_PATH pointing to the folder

Setting the environment prior to running Blender is necessary (and done by
our blender-*.sh scripts):

$ export BLENDER_EXTERN_DRACO_LIBRARY_PATH=/usr/lib

but not sufficient, as the built library does not bear the expected name.
So, as root, one shall fix that once for all:

$ cd /usr/lib
$ ln -s libdraco.so libextern_draco.so

Then the log message will become:

’/usr/lib/libextern_draco.so’ exists, draco mesh compression is available

The Compressonator

The Compressonator is an AMD tool (as a GUI, a command-line executable and
a SDK) designed to compress textures (e.g. in DXT1, DXT3 or DXT5 formats;
typically resulting in a .dds extension) and to generate mipmaps ahead of time,
so that it does not have to be done at runtime.

F3D

f3d (installable from the AUR) is a fast and minimalist VTK-based 3D viewer.
Such a viewer is especially interesting to investigate whether a tool failed

to properly export a content or whether it is the next tool that actually failed
to properly import, and to gain another chance of accessing to relevant error
messages.

78

https://google.github.io/draco/
https://github.com/google/draco#gltf-transcoding-tool
https://github.com/GPUOpen-Tools/Compressonator
https://aur.archlinux.org/packages/draco-git/
https://gpuopen.com/compressonator/
https://github.com/f3d-app/f3d

Mikktspace

This tool (official website), created by Morten S. Mikkelsen, is a de facto (free)
standard in terms of normal map baker: it generates Tangent Space Normal
Maps (tangents), and helps ensuring consistency between 3D applications (such
as Blender).

These fields of normals may be seen as an encoding - explaining why con-
ventions like the ones enforced by this tool (which became an implementation
standard) help performing a suitable, robust reciprocal decoding.

Mixamo

Mixamo is a website that allows to download and use for free a large number
of rather high-quality 3D characters (about 110 of them; all being textured and
rigged) and animations (about 2500 of them; full-body character animations,
captured from professional motion actors), which can be arbitrarily mixed and
matched.

This website allows also to rig one’s (humanoid) character (see Upload
character).

The licence attached to Mixamo is rather permissive; notably:

You can use both characters and animations royalty free for personal, commercial, and non-profit projects including:
Incorporate characters into illustrations and graphic art.
3D print characters.
Create films.
Create video games.

OpenGL Corner
Conventions

Refer to our Mini OpenGL Glossary for most of the terms used in these sections.
Code snippets will correspond to the OpenGL/GLU APIs as they are ex-

posed in Erlang, in the gl and glu modules respectively.
These translate easily for instance in the vanilla C GL/GLU implementa-

tions. As an example, gl:ortho/6 (6 designating here the arity of that function,
i.e. the number of the arguments that it takes) corresponds to its C counterpart,
glOrtho.

The reference pages for OpenGL (in version 4.x) can be browsed here.
Note that initially the information in this page related to older versions of

OpenGL (1.1, 2.1, etc.; see history) that relied on a fixed pipeline (no shader sup-
port) - whereas, starting from OpenGL 3.0, many of the corresponding features
were marked as deprecated, and actually removed as a whole in 3.1. However,
thanks to the compatibility context (whose support is not mandatory - but that
all major implementations of OpenGL provide), these features can still be used.

Yet nowadays relying on at least the OpenGL 3 core context (not using the
compatibility context) would be preferable (source: this thread). Still better
options would be to rely on OpenGL 4 Core or OpenGL ES 2+, or libraries on
top of Vulkan, like wgpu. Specific libraries also exist for rendering for the web
and for mobile, like WebGPU.

79

http://www.mikktspace.com/
https://www.mixamo.com/#/
https://helpx.adobe.com/creative-cloud/faq/mixamo-faq.html
https://www.erlang.org/doc/man/gl.html
https://www.erlang.org/doc/man/glu.html
https://www.erlang.org/doc/man/gl.html#ortho-6
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://www.khronos.org/opengl/wiki/History_of_OpenGL
https://erlangforums.com/t/no-gl-get-1/1035
https://en.wikipedia.org/wiki/Vulkan
https://github.com/gfx-rs/wgpu
https://www.w3.org/TR/webgpu/

As of 2023, the current OpenGL version is 4.6; we will try to stick to the
latest ones (4.x) only (e.g. skipping intermediate changes in 3.2); even though
in this document reminiscences of older OpenGL versions remain, the current
minimum that we target is the Core Profile of OpenGL 3.3, which is "mod-
ern OpenGL" and introduced most features that still apply; it will halt on error
if any deprecated functionality is used.

For more general-purpose computations (as opposed to rendering operations)
to be offset to a GPU/GPGU, one may rely on OpenCL instead.

The mentioned tests will be Ceylan-Myriad ones, typically located here.

Basics

• OpenGL is a software interface to graphics hardware, i.e. the spec-
ification of an API (of around 150 functions in its older version 1.1),
developed and maintained by the Khronos Group

• a video card will run an implementation of that specification, generally
developed by the manufacturer of that card; a good rule of thumb is to
always update one’s video card drivers to their latest stable version, as
OpenGL implementations are constantly improved (bug-fixing) and up-
dated (with regard to newer OpenGL versions)

• OpenGL concentrates on hardware-independent 2D/3D rendering;
no commands for performing window-related tasks or obtaining user input
are included; for example frame buffer configuration is done outside of
OpenGL, in conjunction with the windowing system

• OpenGL offers only low-level primitives organised through a pipeline
in which vertices are assembled into primitives, then to fragments, and
finally to pixels in the frame buffer; as such, OpenGL is a building-block
for higher-level engines (e.g. like Godot)

• OpenGL is a procedural (function-based, not object-oriented) state ma-
chine comprising a larger number of variables defined within a given
OpenGL state (named an OpenGL context ; comprising vertex coordinates,
textures, frame buffer, etc.); said otherwise, all OpenGL state variables
behave like "global" variables, more precisely they are actually relative
to an OpenGL context that is often implicit; when a parameter is set,
it applies and lasts as long as it is not modified (if still using the same
OpenGL context); the effect of an OpenGL command may vary depending
on whether certain modes are enabled (i.e. whether some state variables
are set to a given value)

• so the currently processed element (e.g. a vertex) inherits (implic-
itly) the current settings of the context (e.g. color, normal, texture
coordinate, etc.); this is the only reasonable mode of operation, knowing
that a host of parameters apply whenever performing a rendering opera-
tion (specifying all these parameters would not be a realistic option); as a
result, any specific parameter shall be set first (prior to triggering such an
operation), and is to last afterwards (being "implicitly inherited"), until
possibly being reassigned in some later point in time

80

Erlang.html#opencl
http://myriad.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Myriad/tree/master/test/user-interface/graphical/opengl
https://www.khronos.org/
https://www.glprogramming.com/blue/ch02.html#id57691
https://en.wikipedia.org/wiki/Godot_(game_engine)

• OpenGL respects a client/server execution model: an application (a
specific client, running on a CPU) issues commands to a rendering server
(on the same host or not - see GLX; generally the server can be seen
as running on a local graphic card), that executes them sequentially
and in-order; as such, most of the calls performed by user programs
are asynchronous: they are triggered by the (client) program through
OpenGL, and return almost immediately, whereas they have not been
executed (by the server) yet: they have just be queued; indeed OpenGL
implementations are almost always pipelined, so the rendering must be
thought as primarily taking place in a background process; additional
facilities like Display Lists allow to pipeline operations (as opposed to the
default immediate mode), which are accumulated for processing at a later
time, as fast as the graphic card can then process them

• state variables are mostly server-side, yet some of them are client-side; in
both cases, they can be gathered in attribute groups, which can be pushed
on, and popped from, their respective server or client attribute stacks

• OpenGL manages two types of data, handled by mostly different paths of
its rendering pipeline, yet that are ultimately integrated in the framebuffer
through fragment-yielding rasterization:

– geometric data (vertices, lines, and polygons)

– pixel data (pixels, images, and bitmaps)

• vertices and normals are transformed by the model-view and projection
matrices (that can be each set and transformed on a stack of their own),
before being used to produce an image in the frame buffer; as for texture
coordinates, they are transformed by the texture matrix

• textures may reside in the main, general-purpose, client, CPU-side mem-
ory (large, but slow to access for the rendering) and/or in any auxiliary,
dedicated, server-side GPU memory (more constrained, hence priori-
tized thanks to texture objects; and, rendering-wise, of significantly higher
performance)

• OpenGL has to apply varied kinds of transformations - "linear" (e.g. ro-
tation, scaling) or not (e.g. translation, perspective) - to geometries, for
example in order to perform coordinate system changes or rendering; each
of these transformations can be represented as a 4x4 homogeneous ma-
trix, with floating-point (homogeneous) coordinates24; a series of trans-
formations can then simply be represented as a single of such matrices,
corresponding to the product (of course in a right order) of the involved
transformation matrices

24So a 3D point is specified based on 4 coordinates: 𝑃 =

⎛⎜⎜⎝
𝑥
𝑦
𝑧
𝑤

⎞⎟⎟⎠, with w being usually

equal to 1.0 (otherwise the point can be normalised by dividing each of its coordinates by w,
provided of course that w is not null - otherwise these coordinates do not specify a point but
a direction).

81

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

• while this will not change anything regarding the actual OpenGL library
and the computations that it performs, the conventions adopted by the
OpenGL documentation regarding matrices are the following ones:

– their in-memory representation is column-major order (even if it is
unusual, at least in C; this corresponds to Fortran-like conventions),
meaning that it enumerates their coordinates first per column rather
than per row (and for them a vector is a row of coordinates), whereas
tools following the row-major counterpart order, including Myriad,
do the opposite (and for them vectors are columns of coordinates);

more clearly, a matrix like 𝑀 =

⎡⎢⎢⎣
𝑎11 𝑎12 ... 𝑎1𝑛
𝑎21 𝑎22 ... 𝑎2𝑛
...

𝑎𝑚1 𝑎𝑚2 ... 𝑎𝑚𝑛

⎤⎥⎥⎦
∗ will be stored with row-major conventions (e.g. Myriad) as: a11,
a12, ... a1n, a21, a22, ... a2n, am1, am2, ... amn (or,
more precisely, as [[a11, a12, ... a1n], [a21, a22, ...
a2n], ..., [am1, am2, ... amn]])

∗ whereas, with the conventions discussed, OpenGL will expect
it to be stored in-memory in this order: a11, a21, ..., am1,
a21, a22, ..., am2, ..., a1n, a2n, ..., amn, i.e. as the
transpose of the previous matrix

– these OpenGL storage conventions do not tell how matrices are to be
multiplied (knowing of course that the matrix product is not com-
mutative); if following the aforementioned OpenGL documentation
conventions, one should consider that OpenGL relies on the usual
multiplication order, that is post-multiplication, i.e. multiplica-
tion on the right ; this means that, if applying on a given matrix 𝑀
a transformation 𝑂 (e.g. rotation, translation, scaling, etc.) repre-
sented by a matrix 𝑀𝑂, the resulting matrix will be 𝑀 ′ = 𝑀.𝑀𝑂

(and not 𝑀 ′ = 𝑀𝑂.𝑀); a series of operations 𝑂1, then 𝑂2, ..., then
𝑂𝑛 will therefore correspond to a matrix 𝑀 ′ = 𝑀𝑂1.𝑀𝑂2.[...].𝑀𝑂𝑛;
applying a vector �⃗� to a matrix 𝑀 will result in 𝑉 ′ = 𝑀.�⃗�

– so when an OpenGL program performs calls implementing first a
rotation (r), then a scaling (s) and finally a translation (t):

glRotatef(90, 0, 1, 0);
glScalef(1.0, 1.1, 1.0);
glTranslatef(5,10,5);

the current matrix 𝑀 ends up being multiplied (on the right) by 𝑀 ′ =

𝑀𝑟.𝑀𝑠.𝑀𝑡; when applied to a vector �⃗� , still multiplying on the right
results in 𝑉 ′ = 𝑀.�⃗� = 𝑀.𝑀𝑟.𝑀𝑠.𝑀𝑡.�⃗�

′; so the input vector �⃗� is first
translated, then the result is scaled, then rotated, then transformed by the

Thus summing (like vectors) two 4D points actually returns their mid-point (center of seg-

ment), as w will be normalised: 𝑃1+𝑃2 =

⎛⎜⎜⎝
𝑥1
𝑦1
𝑧1
1.0

⎞⎟⎟⎠+

⎛⎜⎜⎝
𝑥2
𝑦2
𝑧2
1.0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑥1 + 𝑥2
𝑦1 + 𝑦1
𝑧1 + 𝑧2

2.0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
(𝑥1 + 𝑥2)/2.0
(𝑦1 + 𝑦2)/2.0
(𝑧1 + 𝑧2)/2.0

1.0

⎞⎟⎟⎠

82

https://www.opengl.org//archives/resources/faq/technical/transformations.htm
https://en.wikipedia.org/wiki/Row-_and_column-major_order
http://myriad.esperide.org/#matrix-conventions
http://steve.hollasch.net/cgindex/math/matrix/column-vec.html

previous matrix 𝑀 ; as a result: operations happen in the opposite
order of their specification as calls; said differently: one shall specify
the calls corresponding to one’s target series of transformations backwards

– considering that the OpenGL storage is done in a surprising column-
major order was actually a trick so that OpenGL could rely on the
(modern, math-originating) vector-as-column convention while being
still compliant with its GL ancestor - which relied on the (now un-
usual) vector-as-row convention and on pre-multiplication (where we
would have 𝑀 ′ = 𝑀𝑂.𝑀); indeed, knowing that, when transposing
matrices, (𝐴.𝐵)⊤ = 𝐵⊤.𝐴⊤, one may consider that OpenGL actually
always operates on transpose elements, and thus that: (1) matrices
are actually specified in row-order and (2) they are multiplied on the
left (e.g. 𝑀 ′ = 𝑀𝑡.𝑀𝑠.𝑀𝑟.𝑀); note that switching convention does
not affect at all the computations, and that the same operations are
always performed in reverse call order

• OpenGL can operate on three mutually exclusive modes:

– rendering : is the default, most common mode, discussed here

– feedback : allows to capture the primitives generated by the vertex
processing, i.e. to establish the primitives that would be displayed
after the transformation and clipping steps; often used in order to
resubmit this data multiple times

– selection: determines which primitives would be drawn into some
region of a window (like in feedback mode), yet based on stacks of only
user-specified "names" (so that the actual data of the corresponding
primitives is not returned, just their name identifier); a special case
of selection is picking, allowing to determine what are the primitives
rendered at a given point of the viewport (typically the onscreen
position of the mouse cursor, to enable corresponding interactions)

Steps for OpenGL Rendering The usual analogy to describe them is the
process of producing a photography:

1. a set of elements (3D objects) can be placed (in terms of position and orien-
tation) as wanted in order to compose one’s scene of interest (modelling
transformations, based on world coordinates)

2. the photographer may similarly place as wanted at least one camera (viewing
transformations, based on camera coordinates)

3. the settings of the camera can be adjusted, for example regarding its lens
/ zoom factor (projection transformations, based on window coordi-
nates)

4. the snapshots that it takes can be further adapted before being printed,
for example in terms of scaling (viewport transformations, based on
screen coordinates)

83

One can see that the first two steps are reciprocal; for example, moving all
objects in a direction or moving the camera in the opposite direction is basically
the same operation. These two operations, being the two sides of the same coin,
can thus be managed by a single matrix, the model-view one.

Finally, as mentioned in the section about storage conventions, in OpenGL,
operations are to be defined in reverse order. If naming 𝑀𝑠 the matrix im-
plementing a given step S, the previous process would be implemented by an
overall matrix, based on the previous bullet numbers: 𝑀 = 𝑀4.𝑀3.𝑀2.𝑀1, so
that applying a vector �⃗� to 𝑀 results in 𝑉 ′ = 𝑀.�⃗� = 𝑀4.𝑀3.𝑀2.𝑀1.�⃗� =
𝑀4.(𝑀3.(𝑀2.(𝑀1.�⃗�))).

Transformations In this context - except notably the projections - most
transformations are invertible, and a composition of invertible transformations,
in any combination and sequence, is itself invertible.

As mentioned, they can all be expressed as 4x4 homogeneous matrices, and
their composition translates into the (orderly) product of their matrices.

Coordinate system transitions are discussed further in this document, in the
3D coordinate systems section.

Translations / Rotations / Scalings / Shearings

• the inverse of a translation of a vector 𝑇 is a translation of vector −⃗𝑇 ,
thus: (𝑀𝑡𝑇)−1=𝑀𝑡−𝑇

• the inverse of a rotation of an angle 𝜃 along a vector �⃗� is a rotation of
an angle −𝜃 along the same vector, thus: (𝑀𝑟(�⃗�, 𝜃))

−1 = 𝑀𝑟(�⃗�,−𝜃)

• the inverse of a (uniform) scaling of a (non-null) factor 𝑓 is a scaling
of factor 1/𝑓 , thus: (𝑀𝑠𝑓)

−1 = 𝑀𝑠1/𝑓 ; the same applies for each factor
when performing a shear mapping

Reflections Symmetries with respect to an axis correspond to a scaling
factor of −1 along this axis, and 1 along the other axes.

Affine Transformations An affine transformation designates all geomet-
ric transformations that preserve lines and parallelism (but not necessarily dis-
tances and angles).

They are compositions of a linear transformation and a translation of their
argument.

For them 𝑓(𝜆.𝑥+ 𝑦) = 𝜆.𝑓(𝑥) + 𝑓(𝑦).

Projections In OpenGL, the projection matrix (GL_PROJECTION) trans-
forms eye coordinates to clip coordinates (not viewport coordinates).

A projection defines 6 clipping planes (and at least 6 additional ones can be
defined).

A 3D plane is defined by including a given (3D) point and comprising all
vectors orthogonal to a given vector; it can be defined thanks to 4 coordinates

84

https://en.wikipedia.org/wiki/Affine_transformation

(e.g. (a, b, c, d)); and a given point 𝑃 =

⎛⎝𝑥
𝑦
𝑧

⎞⎠ will belong to such a plane

iff 𝑎.𝑥+ 𝑏.𝑦 + 𝑐.𝑧 + 𝑑 = 0.
Two kinds of projections are considered below: orthographic and perspective;

for extra information, refer to this OpenGL Projection Matrix page.
Orthographic Projections

Their viewing volume is a parallelepiped, precisely a rectangular cuboid.
With such projections, parallel lines remain parallel; see gl:ortho/6 and

glu:ortho2D/4.
Perspective Projections

Their viewing volume is a truncated pyramid.
They are defined based on a field of view and an aspect ratio; see gl:frustum/6

and glu:perspective/4.

Viewport Transformations As for the viewport, it is generally defined
with gl:viewport/4 so that its size corresponds to the widget in which the
rendering is to take place.

To avoid distortion, its aspect ratio must be the same as the one of the
projection transformation.

Camera The default model-view matrix is an identity; the camera (or eye) is
located at the origin, points down the negative Z-axis, and has an up-vector of
(0, 1, 0).

With Z-up conventions (like in Myriad ones), this corresponds to a camera
pointing downward (see Coordinate Systems In 3D to picture it).

Calling glu:lookAt/9 allows to set arbitrarily one’s camera position and
orientation.

In order to switch from (OpenGL) Y-up conventions to Z-up ones, another
option is to rotate the initial (identity) model-view matrix along the X axis of
an angle of −𝜋/2, or to (post-)multiply the model-view matrix with:

𝑀𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑃𝑧𝑢𝑝→𝑦𝑢𝑝 =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦
For example, if we want that this camera sees, in the (Z-up) MyriadGUI co-

ordinate system, a point P at coordinates 𝑃𝑧𝑢𝑝 =

⎡⎣01
0

⎤⎦ (thus a point in its Y

axis), then the coordinates of the same point P this time in the base OpenGL

(Y-up) coordinate system must be 𝑃𝑦𝑢𝑝 = 𝑃𝑧𝑢𝑝→𝑦𝑢𝑝.𝑃𝑧𝑢𝑝 =

⎡⎣ 0
0
−1

⎤⎦; refer to the

Computing Transition Matrices section for more information.

85

http://www.songho.ca/opengl/gl_projectionmatrix.html

OpenGL Hints

• a frequent pattern is, for some type of OpenGL element (let’s name it
Foo; it could designate for example Texture, Buffer or VertexArray)
is to call first (here in C) glGenObjects(1, &fooId); (note the plural),
then glBindObject(GL_SOME_TARGET, fooId);

– it must be understood that glGenObjects is the actual creator of
(at least) one new (blank) instance of Foo, whose address is kept by
OpenGL behind the scenes; the user program will be able to access
this instance only once bound thanks to an additional level of indirec-
tion, its (GL) identifier (fooId here); "integer pointers/identifiers"
are thus used

– as for glBindObject, its role is to register the Foo pointer correspond-
ing to the specified identifier fooId in the C-like struct that corre-
sponds to the current context (i.e. the current state of OpenGL), in
the field designated here by GL_SOME_TARGET, like in: current_gl_context->gl_some_target
= foo_pointer_for(fooId); this operation is thus mostly a (quick)
assignment

– once bound, this Foo instance can be accessed implicitly (through the
current context) by calls such as glSetFooOption(GL_SOME_TARGET,
GL_OPTION_FOO_WIDTH, 800); (where neither its identifier nor any
pointer for it is specified); once done, this instance can be unbound
with glBindObject(GL_SOME_TARGET, 0);; rebinding that identifier
later will restore the corresponding options; as a result, several in-
stances can be created, corresponding to as many sets of predefined
options, and when a given one shall apply, it just has to be bound

• in OpenGL:

– 3D coordinates are processed iff they are Normalized Device Coordi-
nates (see NDC), for all 3 dimensions

– the alpha color coordinate encodes opacity (as usual); thus 1.0
means fully opaque, whereas 0.0 means fully transparent

Mini OpenGL Glossary Terms that are more or less specific to OpenGL:

• Accumulation buffer: a buffer that may be used for scene antialiasing;
the scene is rendered several times, each time jittered less than one pixel,
and the images are accumulated and then averaged

• Alpha Test: to reject fragments based on their alpha coordinate; useful
to reduce the number of fragments rendered through transparent surfaces

• Context: a rendering context corresponds to the OpenGL state and the
connection between OpenGL and the system; in order to perform a ren-
dering, a suitable context must be current (i.e. bound, active for the
OpenGL commands); it is possible to have multiple rendering contexts
share buffer data and textures, which is specially useful when the appli-
cation uses multiple threads for updating data into the memory of the
graphics card

86

• DDS: a file format suitable for texture compression that can be directly
read by the GPU

• Display list: a series of OpenGL commands, identified by an integer,
to be stored, server-side, for subsequent execution; it is defined so that it
can be sent and processed more efficiently, and probably multiple times,
by the graphic card (compared to doing the same in immediate mode)

• EBO: a (GLSL) Element Buffer Object, a buffer storing the index of each
vertex that OpenGL shall draw (rather than the vertex itself), relatively
to a corresponding VBO; defining faces based on indices rather than on
vertices allows to avoid vertex duplication (as by design a vertex is common
to multiple faces; it should be best specified only once, and referenced as
many times as needed); more information

• (pixel) fragment: two-dimensional description of elements (point, line seg-
ment, or polygon) produced by the rasterization step, before being stored
as pixels in the frame buffer; also defined as: "a point and its associated
information"; a fragment translates to a pixel after a process involving in
turn: texture mapping, fog effect, antialiasing, tests (scissor, alpha, sten-
cil, depth), blending, dithering, and logical operations on fragments (and,
or, xor, not, etc.)

• Evaluator: the part of the pipeline to perform polynomial mapping (basis
functions) and transform higher-level primitives (such as NURBS) into
actual ones (vertices, normals, texture coordinates and colors)

• Frame buffer: the "server-side" pixel buffer, filled, after rasterization
took place, by combinations (notably blending) of the selected fragments;
it is actually made of a set of logical buffers of bitplanes: the color (itself
comprising multiple buffers), depth (for hidden-surface removal), accumu-
lation, and stencil buffers

• GL: Graphics Library (also a shorthand for OpenGL, which is an open
implementation thereof)

• GLU: OpenGL Utility Library, a standard part of every OpenGL imple-
mentation, providing auxiliary features (e.g. image scaling, automatic
mipmapping, setting up matrices for specific viewing orientations and pro-
jections, performing polygon tessellation, rendering surfaces, supporting
quadrics routines that create spheres, cylinders, cones, etc.); see this page
for more information

• GLUT, OpenGL Utility Toolkit, a system-independent window toolkit hiding
the complexities of differing window system APIs and more complicated
three-dimensional objects such as a sphere, a torus, and a teapot; its main
interest was when learning OpenGL, it is less used nowadays

• GLX: the X extension of the OpenGL interface, i.e. a solution to integrate
OpenGL to X servers; see this page for more information

• GLSL: OpenGL Shading Language, a C-like language with which the trans-
formation and fragment shading stages of the pipeline can be programmed;
introduced in OpenGL 2.0; see our GLSL section

87

https://learnopengl.com/Getting-started/Hello-Triangle
https://www.glprogramming.com/blue/ch02.html#id24847
https://www.glprogramming.com/blue/ch02.html#id86751
https://en.wikipedia.org/wiki/OpenGL_Shading_Language

• NDC: Normalized Device Coordinate; such a coordinate is, in OpenGL, in
[−1.0, 1.0], defining a cube (see this example, which does not represents
the Z axis); only the points ultimately within this cube will be rendered, by
being transformed to screen-space (viewport) coordinates and then frag-
ments sent to the fragment shader; the conventions for texture coordinates
(texels) are different

• OpenCL: Open Computing Language, a framework for writing programs
that execute across heterogeneous platforms: central processing units
(CPUs), graphics processing units (GPUs), digital signal processors (DSPs),
field-programmable gate arrays (FPGAs) and other processors or hard-
ware accelerators; in practice OpenCL defines programming languages,
deriving from C and C++, for these devices, and APIs to control the
platform and execute programs on the compute devices; OpenGL defines
a standard interface for parallel computing using task-based and data-
based parallelism; see also our Erlang-related section

• OpenGL ES: OpenGL for Embedded Systems is a subset of the OpenGL
API, designed for embedded systems (like smartphones, tablet computers,
video game consoles and PDAs)

• Pixel: Picture Element

• Primitive: points, lines, polygons, images and bitmaps

• (geometric) Primitives: they are (exactly) points, lines and polygons

• Rasterization: the process by which a primitive is converted to a two-
dimensional image

• Scissor Test: an arbitrary screen-aligned rectangle outside of which
fragments will be discarded; useful to clear or update only a part of the
viewport

• Shader: a user-defined program providing the code for some programmable
stages of the rendering pipeline; they can also be used in a slightly more
limited form for general, on-GPU computation (source)

• Stencil Test: conditionally discards a fragment based on the outcome
of a selected comparison between the value in the stencil buffer and a
reference value; useful to perform non-rectangular clipping

• Texel: Texture Element ; it corresponds to a (s,t) pair of coordinates
in [0,1] designating a point in a texture (see this example; NDCs span
different ranges)

• Vertex Array: these in-memory client-side arrays may aggregate 6 types
of data (vertex coordinates, RGBA colors, color indices, surface normals,
texture coordinates, polygon edge flags), possibly interleaved; such arrays
allow to reduce the number of calls to OpenGL functions, and also to share
elements (e.g. vertices pertaining to multiple faces should preferably be
defined only once); in a non-networked setting, the GPU just dereferences
the corresponding pointers

88

https://learnopengl.com/img/getting-started/ndc.png
https://en.wikipedia.org/wiki/OpenCL
Erlang.html#opencl
https://en.wikipedia.org/wiki/OpenGL_ES
https://www.khronos.org/opengl/wiki/Shader
https://learnopengl.com/img/getting-started/tex_coords.png

• Viewport: the (rectangular) part (defined based on its lower left corner
and its width and height, in pixels) within the current window in which
OpenGL is to perform its rendering; so multiple viewports may be used
in turn in order to offer multiple, composite views of the scene of interest
in a given window; the ultimately processed 2D coordinates in OpenGL
are both in [-1.0, 1.0] before they are finally mapped to the current
viewport dimensions (e.g. abscissa in [0,800], ordinate in [0,600], in
pixels)

• Vulkan: a low-overhead, cross-platform API, open standard for 3D graph-
ics and computing; it is intended to offer higher performance and more
balanced CPU and GPU usage than the OpenGL or Direct3D 11 APIs; it is
lower-level than OpenGL, and not backwards compatible with it (source)

• VAO: a (GLSL) Vertex Array Object (OpenGL 4.x), able to store multiple
VBOs (up to one for vertices, the others for per-vertex attributes); a VAO
corresponds to an homogeneous chunk of data, sent from the CPU-space
in order to be stored in the GPU-space; more information

• VBO: a (GLSL) Vertex Buffer Object, a buffer storing a piece of information
(vertex coordinates, or normal, or colors, or texture coordinates, etc.) for
each element of a series of vertices; more information

Refer to the description of the pipeline for further details.

Coordinate Systems

Coordinate Systems In 2D A popular convention, for example detailed in
this section of the (OpenGL) Red book, is to consider that the ordinates increase
when going from the bottom of the viewport to its top; then for example the on-
screen lower-left corner of the OpenGL canvas is (0,0), and its upper-right
corner is (Width,Height).

As for us, we prefer the MyriadGUI 2D conventions, in which ordinates
increase when going from the top of the viewport to its bottom, as depicted in
the following figure:

Such a setting can be obtained thanks to (with Erlang conventions):

gl:matrixMode(?GL_PROJECTION),
gl:loadIdentity(),

% Like glu:ortho2D/4:
gl:ortho(_Left=0.0, _Right=float(CanvasWidth),

_Bottom=float(CanvasHeight), _Top=0.0, _Near=-1.0, _Far=1.0)

89

https://en.wikipedia.org/wiki/Vulkan
http://www.swiftless.com/tutorials/opengl4/4-opengl-4-vao.html
https://www.khronos.org/opengl/wiki/Vertex_Specification#Vertex_Buffer_Object
https://www.glprogramming.com/blue/ch02.html#id57691
https://www.glprogramming.com/red/chapter02.html#name10
https://myriad.esperide.org/#2d-coordinate-system

In this case, the viewport can be addressed like a usual (2D) framebuffer
(like provided by any classical 2D backend such as SDL) obeying the coordinate
system just described: if the width of the OpenGL canvas is 800 pixels and its
height is 600 pixels, then its top-left on-screen corner is (0,0) and its bottom-
right one is (799,599), and any pixel-level operation can be directly performed
there "as usual". One may refer, in Myriad, to gui_opengl_2D_test.erl for a
full example thereof, in which line-based letters are drawn to demonstrate these
conventions.

Each time the OpenGL canvas is resized, this projection matrix has to be
updated, with the same procedure, yet based on the new dimensions.

Another option - still with axes respecting the Myriad 2D conventions - is
to operate this time based on normalised, definition-independent coordi-
nates (see NDC), ranging in [0.0, 1.0], like in:

gl:matrixMode(?GL_PROJECTION),
gl:loadIdentity(),

gl:ortho(_Left=0.0, _Right=1.0, _Bottom=1.0, _Top=0.0, _Near=-1.0, _Far=1.0)

Using "stable", device-independent floats - instead of integers directly ac-
counting for pixels - is generally more convenient. For example a resizing of the
viewport will then not require an update of the projection matrix. One may
refer to gui_opengl_minimal_test.erl for a full example thereof.

Coordinate Systems In 3D We will rely here as well on the Myriad conven-
tions, this time for 3D (not taking specifically time into account in this section,
which anyway cannot be shown properly there):

These are thus Z-up conventions (the Z axis being vertical and designating
altitudes), like modelling software such as Blender.

Note that perhaps the most popular convention is different, it is Y-up, for
which X is horizontal, Y is up and Z is depth (hence Z-buffer) - this axis pointing
then to the user.

A Tree of Coordinate Systems In the general case, either in 2D or
(more often of interest here) in 3D, a given scene (a model) is made of a set
of elements (e.g. the model of a street may comprise a car, two bikes, a few
people) that will have to be rendered from a given viewpoint (e.g. a window on
the second floor of a given building) onto the (flat) user screen (with suitable
clipping, perspective division and projection on the viewport). Let’s start from
the intended result and unwind the process.

90

https://www.libsdl.org/
https://myriad.esperide.org/#3d-coordinate-system

The rendering objective requires to have ultimately one’s scene transformed
as a whole in eye coordinates (to obtain coordinates along the aforementioned
2D screen coordinate system, along the X and Y axes - the Z one serving to sort
out depth, as per our 2D conventions).

For that, a prerequisite is to have the target scene correctly composed, with
all its elements defined in the same, scene-global, space, in their respective po-
sition and orientation (then only the viewpoint, i.e. the virtual camera, can take
into account the scene as a whole, to transform it ultimately to eye coordinates).

As each individual type of model (e.g. a bike model) is natively defined in
an abstract, local coordinate system (an orthonormal basis) of its own, each
actual model instance (e.g. the first bike, the second bike) has to be specifically
placed in the coordinate system of the overall scene. This placement is either
directly defined in that target space (e.g. bike A is at this absolute position and
orientation in the scene global coordinate system) or relatively to a series of
parent coordinate systems (e.g. this character rides bike B - and thus is defined
relatively to it, knowing that for example the bike is placed relatively to the car,
and that the car itself is placed relatively to the scene).

So in the general case, coordinate systems are nested (recursively defined
relatively to their parent) and form a tree25 whose root corresponds to the (pos-
sibly absolute) coordinate system of the overall scene, like in (R standing here
for reference frame, a concept that we deem a bit more general than coordinate
system):

25This is actually named a scene graph rather than a scene tree, as if we consider the leaves
of that "tree" to contain actual geometries (e.g. of an abstract bike), as soon as a given
geometry is instantiated more than once (e.g. if having 2 of such bikes in the scene), this
geometry will have multiple parents and thus the corresponding scene will be a graph.

As for us, we consider reference frame trees (no geometry involved) - a given 3D object

91

A series of model transformations has thus to be operated in order to express
all models in the scene reference frame:

(local reference frame of model Rh) -> (parent reference frame Rf) -> (parent reference frame Ra) -> (scene reference frame Rs)

For example the hand of a character may be defined in 𝑅ℎ, itself defined
relatively to its associated forearm in 𝑅𝑓 up to the overall reference frame 𝑅𝑎 of
that character, defined relatively to the reference frame of the whole scene, 𝑅𝑠.
This reference frame may have no explicit parent defined, meaning implicitly
that it is defined in the canonical, global, "world" reference frame.

Once the model is expressed as a whole in the scene-global reference frame,
the next transformations have to be conducted : view and projection. The
view transformation involves at least an extra reference frame, the one of the
camera in charge of the rendering, which is 𝑅𝑐, possibly defined relatively to 𝑅𝑠

(or any other reference frame).
So a geometry (e.g. a part of the hand, defined in 𝑅𝑓) has to be transformed

upward in the reference frame tree in order to be expressed in the common,
"global" scene reference frame 𝑅𝑠, before being transformed last in the camera
one, 𝑅𝑐 .

In practice, all these operations can be done thanks to the multiplication of
homogeneous 4x4 matrices, each able to express any combination of rotations,
scalings/reflections/shearings, translations26, which thus include the transfor-
mation of one reference frame into another. Their product can be computed
once, and then applying a vector (e.g. corresponding to a vertex) to the result-
ing matrix allows to perform in one go the full composition thereof, encoding
all model-view transformations (and even the projection) as well.

Noting 𝑃𝑎→𝑏 the transition matrix transforming a vector 𝑉𝑎 expressed in 𝑅𝑎

into its representation 𝑉𝑏 in 𝑅𝑏, we have:

𝑉𝑏 = 𝑃𝑎→𝑏.𝑉𝑎

Thus, to express the geometry of said hand (natively defined in 𝑅ℎ) in camera
space (hence in 𝑅𝑐), the following composition of reference frame changes27 shall
be applied:

𝑃ℎ→𝑐 = 𝑃𝑠→𝑐.𝑃𝑎→𝑠.𝑃𝑓→𝑎.𝑃ℎ→𝑓 .

So a whole series of transformations can be done by applying a single matrix
- whose coordinates are determined now.
being possibly associated to (1) a reference frame and (2) a geometry (independently). This
is as expressive, and most probably clearer.

26In practice the recommended order of the operations are: scaling, then rotation, then
translation, otherwise they will become coupled and would interfere negatively (e.g. a trans-
lation vector would be scaled as well).

27Thus transformation matrices, knowing that the product of such matrices is in turn a
transformation matrix.

92

Computing Transition Matrices For that, let’s consider that an homoge-
neous 4x4 matrix is in the form of:

𝑀 =

⎡⎢⎢⎣
𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3
0 0 0 1

⎤⎥⎥⎦
It can be interpreted as a matrix comprising two blocks of interest, 𝑅 and 𝑇 :

𝑀 = 𝑃1→2 =

[︂
𝑅 𝑇
0 1

]︂
with:

• 𝑅, which accounts for a 3D rotation submatrix:

𝑅 =

⎡⎣𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎤⎦
• 𝑇 , which accounts for a 3D translation vector:

𝑇 =

⎡⎣𝑡1𝑡2
𝑡3

⎤⎦
Applying a (4x4 homogeneous) point 𝑃 =

⎧⎪⎪⎨⎪⎪⎩
𝑥
𝑦
𝑧
1

⎫⎪⎪⎬⎪⎪⎭ to 𝑀 yields 𝑃 ′ = 𝑀.𝑃

where 𝑃 ′ corresponds to 𝑃 once it has been (1) rotated by 𝑅 and then (2)
translated by 𝑇 (the order matters).

Let’s consider now:

93

• two coordinate systems (defined as orthonormal bases), 𝑅1 and 𝑅2; 𝑅2

may for example be defined relatively to 𝑅1; for a given point or vector
𝑈 , 𝑈1 will designate its coordinates in 𝑅1, and 𝑈2 its coordinates in 𝑅2

• 𝑃2→1 the (homogeneous 4x4) transition matrix from 𝑅2 to 𝑅1, specified
first by blocks then by coordinates as:

𝑃2→1 =

[︂
𝑅 𝑇
0 1

]︂

=

⎡⎢⎢⎣
𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3
0 0 0 1

⎤⎥⎥⎦
• any (4D) point 𝑃 , whose coordinates are 𝑃1 in 𝑅1, and 𝑃2 in 𝑅2

The objective is to determine 𝑃2→1, i.e. 𝑅 and 𝑇 .
By definition of a transition matrix, for any point 𝑃 , we have: 𝑃1 =

𝑃2→1.𝑃2 (1)
Let’s study 𝑃2→1 by first choosing a point 𝑃 equal to the origin of 𝑅2 (shown

as Ob in the figure).

By design, in homogeneous coordinates, 𝑃2 = 𝑂𝑏2 =

⎧⎪⎪⎨⎪⎪⎩
0
0
0
1

⎫⎪⎪⎬⎪⎪⎭, and applying it

on (1) gives us: 𝑃1 = 𝑂𝑏1 =

⎧⎪⎪⎨⎪⎪⎩
𝑡1
𝑡2
𝑡3
1

⎫⎪⎪⎬⎪⎪⎭.

So if 𝑂𝑏1 =

⎧⎪⎪⎨⎪⎪⎩
𝑋𝑂𝑏1
𝑌 𝑂𝑏1
𝑍𝑂𝑏1
1

⎫⎪⎪⎬⎪⎪⎭, we have: 𝑇 = ⃗𝑇2→1 =

⎡⎣𝑋𝑂𝑏1
𝑌 𝑂𝑏1
𝑍𝑂𝑏1

⎤⎦.

Let’s now determine the 𝑟𝑥𝑦 coordinates.
Let 𝑅2→1 be the (3x3) rotation matrix transforming any vector expressed

in 𝑅2 in its representation in 𝑅1: for any (3D) vector �⃗� , we have 𝑉1 =

𝑅2→1.𝑉2 (2)
(we are dealing with vectors, not points, hence the origins are not involved

here).
By choosing �⃗� equal to the 𝐼𝑏 (abscissa) axis of 𝑅2 (shown as Ib in the

figure), we have 𝐼𝑏1 = 𝑅2→1.𝐼𝑏2

Knowing that by design 𝐼𝑏2 =

⎡⎣10
0

⎤⎦, (2) gives us:

𝐼𝑏1 =

⎡⎣𝑟11𝑟21
𝑟31

⎤⎦ =

⎡⎣𝑋𝐼𝑏1
𝑌 𝐼𝑏1
𝑍𝐼𝑏1

⎤⎦
So the first column of the 𝑅 matrix is 𝐼𝑏1 , i.e. the first axis of 𝑅2 as expressed
in 𝑅1.

94

https://en.wikipedia.org/wiki/Change_of_basis

Using in the same way the two other axes of 𝑅2 (shown as Jb and Kb in the
figure), we see that:

𝑅 = 𝑅2→1

=

⎡⎣𝑋𝐼𝑏1 𝑋𝐽𝑏1 𝑋𝐾𝑏1
𝑌 𝐼𝑏1 𝑌 𝐽𝑏1 𝑌 𝐾𝑏1
𝑍𝐼𝑏1 𝑍𝐽𝑏1 𝑍𝐾𝑏1

⎤⎦
So the transition matrix from 𝑅2 to 𝑅1 is:

𝑃2→1 =

[︂
𝑅2→1

⃗𝑇2→1

0 1

]︂
=

⎡⎢⎢⎣
𝑋𝐼𝑏1 𝑋𝐽𝑏1 𝑋𝐾𝑏1 𝑋𝑂𝑏1
𝑌 𝐼𝑏1 𝑌 𝐽𝑏1 𝑌 𝐾𝑏1 𝑌 𝑂𝑏1
𝑍𝐼𝑏1 𝑍𝐽𝑏1 𝑍𝐾𝑏1 𝑍𝑂𝑏1
0 0 0 1

⎤⎥⎥⎦
where:

• 𝑅2→1 is the 3x3 rotation matrix converting vectors of 𝑅2 in 𝑅1, i.e. whose
columns are the axes of 𝑅2 expressed in 𝑅1

• ⃗𝑇2→1 = 𝑂𝑏1 is the 3D vector of the coordinates of the origin of 𝑅2 as
expressed in 𝑅1

This also corresponds to a matrix obtained by describing the 𝑅2 coordinate
system in 𝑅1, by listing first the three (4D) vector axes of 𝑅2 then its (4D)
origin, i.e. 𝑃2→1 =

[︁
𝐼𝑏1 𝐽𝑏1 𝐾𝑏1 𝑂𝑏1

]︁
.

Often, transformations have to be used both ways, like in the case of a scene-
to-camera transformation; as a consequence, transition matrices may have to be
inversed, knowing that (𝑃2→1)

−1 = 𝑃1→2 (since by definition 𝑃2→1.𝑃1→2 = 𝐼𝑑).
An option to determine 𝑃1→2 from 𝑃2→1 could be to compute its inverse

directly, as 𝑃1→2 = (𝑃2→1)
−1, yet 𝑃1→2 may be determined in a simpler manner.

Indeed, for a given point 𝑃 , whose representation is 𝑃1 in 𝑅1 and 𝑃2 in 𝑅2,
we obtain 𝑃1 = 𝑃2→1.𝑃2 by - through the way (4x4) matrices are multiplied
- first applying a (3x3) rotation 𝑅𝑜𝑡3 to 𝑃2 and then a (3D) translation 𝑇𝑟:
𝑃1 = 𝑅𝑜𝑡3.𝑃2+𝑇𝑟 (in 3D; thus leaving out any fourth homogeneous coordinate);
therefore 𝑃2 = (𝑅𝑜𝑡3)

−1.(𝑃1 − 𝑇𝑟). Knowing that the inverse of an orthogonal
matrix is its transpose, and that rotation matrices are orthogonal, (𝑅𝑜𝑡3)

−1 =
(𝑅𝑜𝑡3)

⊤, and thus 𝑃2 = (𝑅𝑜𝑡3)
⊤.(𝑃1 − 𝑇𝑟) = (𝑅𝑜𝑡3)

⊤.𝑃1 − (𝑅𝑜𝑡3)
⊤.𝑇𝑟.

So if:

𝑃2→1 =

[︂
𝑅2→1

⃗𝑇2→1

0 1

]︂
then:

𝑃1→2 =

[︂
(𝑅2→1)

⊤ −(𝑅2→1)
⊤. ⃗𝑇2→1

0 1

]︂
=

⎡⎢⎢⎣
𝑋𝐼𝑏1 𝑌 𝐼𝑏1 𝑍𝐼𝑏1 −(𝑋𝐼𝑏1.𝑋𝑂𝑏1 + 𝑌 𝐼𝑏1.𝑌 𝑂𝑏1 + 𝑍𝐼𝑏1.𝑍𝑂𝑏1)
𝑋𝐽𝑏1 𝑌 𝐽𝑏1 𝑍𝐽𝑏1 −(𝑋𝐽𝑏1.𝑋𝑂𝑏1 + 𝑌 𝐽𝑏1.𝑌 𝑂𝑏1 + 𝑍𝐽𝑏1.𝑍𝑂𝑏1)
𝑋𝐾𝑏1 𝑌 𝐾𝑏1 𝑍𝐾𝑏1 −(𝑋𝐾𝑏1.𝑋𝑂𝑏1 + 𝑌 𝐾𝑏1.𝑌 𝑂𝑏1 + 𝑍𝐾𝑏1.𝑍𝑂𝑏1)

0 0 0 1

⎤⎥⎥⎦

95

Note
Therefore, in a nutshell, the transition matrix from a coordinate system
𝑅𝛼 to a coordinate system 𝑅𝛽 is:

𝑃𝛼→𝛽 =

[︂
𝑅𝑜𝑡𝛼→𝛽

⃗𝑇𝑟𝛼→𝛽

0 1

]︂
=

⎡⎢⎢⎣
𝑋𝐼𝑏𝛽 𝑋𝐽𝑏𝛽 𝑋𝐾𝑏𝛽 𝑋𝑂𝑏𝛽
𝑌 𝐼𝑏𝛽 𝑌 𝐽𝑏𝛽 𝑌 𝐾𝑏𝛽 𝑌 𝑂𝑏𝛽
𝑍𝐼𝑏𝛽 𝑍𝐽𝑏𝛽 𝑍𝐾𝑏𝛽 𝑍𝑂𝑏𝛽
0 0 0 1

⎤⎥⎥⎦
where:

• 𝑅𝑜𝑡𝛼→𝛽 is the 3x3 rotation matrix converting vectors of 𝑅𝛼 in 𝑅𝛽 ,
i.e. whose columns are the axes of 𝑅𝛼 expressed in 𝑅𝛽

• ⃗𝑇𝑟𝛼→𝛽 = 𝑂𝑏𝛽 is the 3D vector of the coordinates of the origin of
𝑅𝛼 as expressed in 𝑅𝛽

This also corresponds to a matrix obtained by describing the 𝑅𝛼 coor-
dinate system in 𝑅𝛽 , by listing first the three (4D) vector axes of 𝑅𝛼

then its (4D) origin, i.e. 𝑃𝛼→𝛽 =
[︁
⃗𝐼𝑏𝛽 ⃗𝐽𝑏𝛽 𝐾𝑏𝛽 𝑂𝑏𝛽

]︁
.

Its reciprocal (inverse transformation) is then:

𝑃𝛽→𝛼 =

[︂
(𝑅𝑜𝑡𝛼→𝛽)

⊤ −(𝑅𝑜𝑡𝛼→𝛽)
⊤. ⃗𝑇𝑟𝛼→𝛽

0 1

]︂
=

⎡⎢⎢⎣
𝑋𝐼𝑏𝛽 𝑌 𝐼𝑏𝛽 𝑍𝐼𝑏𝛽 −(𝑋𝐼𝑏𝛽 .𝑋𝑂𝑏𝛽 + 𝑌 𝐼𝑏𝛽 .𝑌 𝑂𝑏𝛽 + 𝑍𝐼𝑏𝛽 .𝑍𝑂𝑏𝛽)
𝑋𝐽𝑏𝛽 𝑌 𝐽𝑏𝛽 𝑍𝐽𝑏𝛽 −(𝑋𝐽𝑏𝛽 .𝑋𝑂𝑏𝛽 + 𝑌 𝐽𝑏𝛽 .𝑌 𝑂𝑏𝛽 + 𝑍𝐽𝑏𝛽 .𝑍𝑂𝑏𝛽)
𝑋𝐾𝑏𝛽 𝑌 𝐾𝑏𝛽 𝑍𝐾𝑏𝛽 −(𝑋𝐾𝑏𝛽 .𝑋𝑂𝑏𝛽 + 𝑌 𝐾𝑏𝛽 .𝑌 𝑂𝑏𝛽 + 𝑍𝐾𝑏𝛽 .𝑍𝑂𝑏𝛽)

0 0 0 1

⎤⎥⎥⎦
As a result, from the definition of a tree of coordinate systems, we are able

to compute the transition matrix transforming the representation of a vector
expressed in any of them to its representation in any of the other coordinate
systems.

A special case of interest is, for the sake of rendering, to transform, through
that tree, a local coordinate system in which a geometry is defined into the
one of the camera, defining where it is positioned and aimed28; in OpenGL
parlance, this corresponds to the model-view matrix (for "modelling and viewing
transformations") that we designate here as 𝑀𝑚𝑣 and which corresponds to
𝑃𝑙𝑜𝑐𝑎𝑙→𝑐𝑎𝑚𝑒𝑟𝑎.

Taking into account the last rendering step, the projection (comprising clip-
ping, projection division and viewport transformation), which can be imple-
mented as well thanks to a 4x4 (non-invertible) matrix designated here as 𝑀𝑝,
we see that a single combined overall matrix 𝑀𝑜 = 𝑀𝑝.𝑀𝑚𝑣 is sufficient29 to
convey in one go all the transformations that shall be applied to a given geom-
etry for its rendering.

28gluLookAt can define such a viewing transformation matrix, when given (1) the position
of the camera, (2) a point at which it shall look, and (3) a vector specifying its up direction
(i.e. where is the upward direction for the camera - as otherwise all directions orthogonal to
its line of sight defined by (1) and (2) could be chosen).

29In practice, for more flexibility, in older (pre-shader) OpenGL the management of
the viewport, of the projection and of the model-view transformations was done sep-
arately (for example, respectively, with: glViewport, glMatrixMode(GL_MODELVIEW) and
glMatrixMode(GL_PROJECTION); so, in compatibility mode, there is a matrix stack correspond-
ing to GL_MODELVIEW and another one to GL_PROJECTION.

96

Main Matrices

These matrices account for the main processing steps of a rendering.
Three types of coordinate systems can be considered:

• world coordinate system: the absolute, overall coordinate system where
3D scenes are to be assembled

• local coordinate system: the coordinate system in which a given model is
defined (generally placed at its origin)

• camera coordinate system: a coordinate system where a camera is at the
origin, looking down on the negative Z axis

The clip space can also be considered; this is the post-projection space,
where the view frustum is transformed into a cube, centered in the origin, and
going from -1 to 1 in every axis.

The transformations between coordinate systems can be represented by 4×4
transition matrices:

• model matrix (𝑀𝑀): to transform from local to world coordinate system

• view matrix (𝑀𝑉): to transform from world to camera coordinate system

• projection matrix (𝑀𝑃): to transform from camera coordinate system
to clip space

Finally, two composite matrices are especially useful (note the aforemen-
tioned reverse multiplication order) and are typically passed through uniform
variables in shaders:

• ModelView: 𝑀𝑀𝑉 = 𝑀𝑉 .𝑀𝑀

• ModelViewProj: 𝑀𝑀𝑉 𝑃 = 𝑀𝑃 .𝑀𝑀𝑉 = 𝑀𝑃 .𝑀𝑉 .𝑀𝑀

Shaders

They are covered in-depth in the Khronos wiki.

A Programmable Pipeline Shaders are the basic rendering building blocks
of applications using modern OpenGL (e.g. 3.x/4.0 versions).

Such an application will indeed program its own shaders, instead of calling
functions like glBegin()/glEnd() as it was done with OpenGL 1.x-2.x and its
fixed-pipeline immediate mode.

This mode of operation, albeit more complex, offers more control and enables
increased performances.

Parallelism in the Pipeline The key is to write programs that can be ex-
ecuted in a Single Instruction, Multiple Data (SIMD) setting, in order to take
advantage of the vectorization typically supported by GPUs.

A goal is to avoid conditional branching based on values that may differ from
a shader invocation to another (see this explanation).

97

https://www.khronos.org/opengl/wiki/Shader
https://www.khronos.org/opengl/wiki/Shader#Execution_model_and_divergence

If having to take into account two dynamically-uniform (i.e. non-statically
predictable, yet having the same value for every shader invocation within that
group) branches performing simple computations, it is likely that the compiler
will generate code evaluating both expressions, until dropping the result of the
one finally not happening.

Six Types of GLSL Shaders Shaders are written in the GLSL language,
i.e. the OpenGL Shading Language.

They are portions of C-like code that can be inserted in the rendering pipeline
implemented by the OpenGL driver of a GPU card. Six different kinds of
shaders can be defined, depending on the processing step that they implement
and on their purpose: vertex, tessellation for control or for evaluation, geometry,
fragment or compute shaders.

Except this last type (compute shader), all types are mostly dedicated to
rendering. If wanting to perform on one’s GPU more general-purpose processing,
OpenCL shall be preferred to GLSL.

Each shader is to receive data to process that is appropriate to its type;
for example each vertex shader instance will receive a vertex (multiple of such
instances will process each their own vertex in parallel) whereas each fragment
shader will operate on data specific to a pixel.

So shader instances will vary in terms of role (e.g. in charge of the processing
of a vertex or a fragment), data types (input and output ones) and multiplicities
(number of instances). Indeed, if considering a triangle whose vertices are each
pure green, red or blue, only 3 vertices will be processed by the vertex shaders,
whereas all the numerous pixels of the triangle will be the result of the evaluation
of as many fragment shaders, each input of which is computed by interpolating
the attributes of said 3 vertices - which ultimately results in a smooth gradient
over the whole triangle.

Runtime Build Shaders are compiled at (application) runtime30 (to target
exactly the actual hardware), then linked and attached to a separate program
running on the GPU. This is fairly low-level, black-box direct programming, in
sharp contrast with the reliance on APIs that used to be the norm with OpenGL
1.x.

Yet offline compilers exist as well, as well as debuggers (like the NVIDIA
NsightShader Debugger).

Implementing a Shader A shader is quite similar to a C program, yet based
on a specific, core language that enables the definition of relevant data types
and functions.

Data types are usually based on elementary types (float, double, bool, int
and uint), and composed in larger structures, like {vec,mat}{2,3,4}, mat2x3,
arrays and structures, possibly const; see this page for further details.

Similarly, control flow statements and (non-recursive) functions can be de-
fined; every shader must have a main function, and can define other auxiliary
functions as well, in a way similar to a C program. Function parameters may

30So each shader is built each time the application is started, and the operation may fail
(e.g. with 0(40) : error C1503: undefined variable "foobar").

98

https://en.wikipedia.org/wiki/OpenGL_Shading_Language
https://en.wikipedia.org/wiki/OpenCL
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.lighthouse3d.com/tutorials/glsl-tutorial/data-types/
https://www.lighthouse3d.com/tutorials/glsl-tutorial/statements-and-functions/

have the in (which is the default), out or inout qualifiers specified. Additionally
a function may return a result, thanks to return.

So, regarding output, for example a fragment shader must return the color
that it computed: out vec3 my_color; declares this; and the shader code may
be as simple as returning a constant color in all cases, like in:

#version 330 core
out vec3 my_color;

void main()
{

// Same color returned for all fragments:
my_color = vec3(0.05, 0.2, 0.67);

}

Communicating with Shaders Of course the application must have a way
of supplying information to its shaders (the other way round does not really
happen, except for compute shaders), and a given shader must be able to pass
information to (only) any next shader in the pipeline.

Two options exist for shaders to have inputs and outputs, from/to the CPU
and/or other shaders:

• basically each shader is fed with a stream of vertices31 with associated
data, named vertex attributes; these attributes are either user-defined
or built-in (each type of shader having its own set of built-in input at-
tributes)

• global, read-only data can also be defined, as uniform variables

These communication options are discussed more in-depth next.

Vertex Attributes Defining Attributes
A vertex attribute, whether user-defined or built-in, may store any kind of

data - notably positions, texture coordinates and normals.
Either a given attribute is a single, standalone one (then a unique value will

be read and will apply to all vertices), or is per-vertex, in which case it is read
from a buffer, each element of it being bound accordingly when its associated
vertex is processed by the shader. Such arrays are either used in-order, or
according to any indices defined (then themselves defined thanks to an array as
well)32.

Said differently, for each attribute used by a shader, either a single value or
an array thereof must be specified.
Referencing Attributes

31Then the user-defined primitives, applied later in the pipeline, will allow OpenGL to
interpret such a series of vertices in terms of a sequence of triangles, or points, or lines, etc.

32This is the preferred method, as it prevents vertex duplication, and allows to process each
of them once: there is a vertex cache that stores the outputs of the last processed vertices, so
that if a vertex is mentioned multiple times (e.g. being included in a triangle fan or strip),
the corresponding output may be directly re-used (provided it is still in the cache) instead of
having to be computed again.

99

https://www.lighthouse3d.com/tutorials/glsl-tutorial/inter-shader-communication/

In order that attributes can be defined in a place (program or shader) and
referenced later by at least one shader, they must be matched:

• by (attribute) name: then they must bear exactly the same name in the
main program and in the shader(s) using them, knowing that any name
beginning with gl_ is reserved

• or by (attribute) location (i.e. a positive integer): their common location
is specified, and a per-shader variable name is associated - which is more
flexible

• or by block, like for the uniform variables, discussed below

In the two last cases, the layout of variables must match on either side
(for example in the main program and a given shader); for instance, with
"layout(location = 0) in vec3 input_vertex;" in its code, a vertex shader
will expect a (single) vector of 3 (floating-point) coordinates (vec3) to be found
at index 0 (location = 0) as input (in); the application will need to specify a
corresponding Vertex Buffer Object (VBO) for that.

So that they can be fetched for a given vertex, attributes have to be ap-
propriately located in buffers. For each attribute, either the developer de-
fines, prior to linking, a specific location (as an index starting at zero) with
glBindAttribLocation, or he lets OpenGL choose it, and queries it afterwards,
with glGetAttribLocation; refer to this page for further details.

If a given program is linked with two shaders, a vertex one and a fragment
one, the former one will probably have to pass its outputs as inputs of the latter
one; this requires as many variables defined on either side, with relevant out/in
specifications, and a matching name and type; for example the vertex shader
may declare out vec3 my_color; whereas the fragment shader will declare in
vec3 my_color;.
Providing Attribute Data : VAO and VBO

Vertex data is provided thanks to a (single current) Vertex Array Object
(VAO).

A VAO references (rather than storing directly) the format of the vertex
data, as well as the buffers (VBOs, see below) holding that data.

A vertex attribute is identified by a number (in [0;GL_MAX_VERTEX_ATTRIBS-1]),
and by default is accessed as a single value (as opposed to as an array).

A Vertex Buffer Object (VBO) is a data array, typically referenced by a
VAO. A VBO defines its internal structure and where the corresponding data
can be found.

So, in practice, each homogeneous chunk of data (vertices, normals, colors)
to be sent from the CPU-space to the GPU-space (hence from the client side
to the server one) is stored in an array corresponding to a Vertex Buffer Object
(VBO), itself referenced by a Vertex Array Object (VAO). A VAO may gather
vertex data and colour data in separate VBOs, and store them on the graphics
card for any later use (as opposed to streaming vertices through to the graphics
card when they become needed). A VAO is only meant to hold one (VBO) array
of vertices, each other VBO being used then for per-vertex attributes.

100

https://www.lighthouse3d.com/tutorials/glsl-tutorial/attribute-variables/
https://www.khronos.org/opengl/wiki/Vertex_Specification#Vertex_Array_Object
https://www.khronos.org/opengl/wiki/Vertex_Specification#Vertex_Buffer_Object

Uniform Variables are Read-Only and Global Instead of relying on
attributes, an alternate way of passing information, provided that it may change
relatively infrequently, is to use uniform variables, which behave, for a shader
and in the course of a draw call, as read-only, constant global variables for all
vertices (hence their uniform naming). Any shader can access every uniform
variable (they are global), as long as it declares that variable, and these variables
hold as long as they are not reset or updated.

Examples of uniform variables could be the position of a light, transformation
matrices, fog settings, variables such as gravity and speed, etc.

Uniform variables may be defined individually, or be grouped in named
blocks, for a more effective data setup (to share uniform variables between pro-
grams) and transfer from the application to the shader (setting multiple values
at once).

Uniform variables are declared at the program-level (as opposed to a per-
vertex level) thanks to:

• the uniform qualifier on the shader-side, like in uniform mat4 MyMatrix;

• a glGetUniformLocation call on the application-side, to create a loca-
tion associated to a variable name (e.g. my_matrix) in a shader, and to
associate it to a given value, like, in C:

mat4 some_matrix = [...];

GLuint location = glGetUniformLocation(programId, "my_matrix");

if (location >= 0)
{

// Defining a single matrix (1), not to transpose (GL_FALSE):
glUniformMatrix4fv(location, 1, GL_FALSE, &some_matrix[0][0]);
[...]

Individual variables may be used as uniform, as well as arrays and structs.
From the point of view of a shader, these named input variables may be

initialised when declared, but then are read-only; otherwise the application may
choose to set them.

Built-in Variables are Defined by Each Shader Type Finally, de-
pending on the type of a shader, some predefined, built-in variables ("intrinsic
attributes") may be set; they are specified here.

For example, for a vertex shader, following output variables are predefined:

• vec4 gl_Position corresponding to the clip-space (homogeneous) posi-
tion of the output vertex

• float gl_PointSize

• float gl_ClipDistance[]

101

https://www.lighthouse3d.com/tutorials/glsl-tutorial/uniform-blocks/
https://www.lighthouse3d.com/tutorials/glsl-tutorial/uniform-blocks/
https://www.khronos.org/opengl/wiki/Built-in_Variable_(GLSL)

Using Multiple Shaders of the Same Type One may want to use different
shaders of the same type (e.g. to have a choice in terms of fragment shaders) in
the same scene (e.g. one fragment shader dealing with solid colors, another one
with textures).

At any time, up to one shader of a given type may be bound (active), but
any number of shader objects (i.e. shaders loaded into memory and compiled)
can be defined and available.

One approach is to switch shaders (with glUseProgram) between draw calls:
set a shader, draw a model, set another shader, draw another model. However
switching shaders incurs some overhead, so a better course of action may be
to group models/materials according to the shader they are to rely on, and to
iterate on these shaders, bound one after the other, each only once per frame.

Other approaches are to render to textures, to rely on a Framebuffer Ob-
ject with Renderbuffers Objects attached, or to use deferred shading or GLSL
subroutines.

A last approach, perhaps the simplest and overall best, is to define a "macro-
shader" per shader type (e.g. a macro-fragment shader) that regroups the code
of each of the shaders of interest, and that may apply one or multiple of these
effects based on conditions (variables); no switching will be needed then.

Refer to this thread for more details.

Troubleshooting Shaders Once a shader builds correctly, it may misbehave
at runtime.

One may refer to the "Debugging shader output" section of this page.

Examples of Shaders See the ones of Wings3D (in GLSL "1.2" apparently,
presumably for maximum backward compatibility; note that some elements,
with the *.cl extension, are OpenCL ones), or these ones.

Managing Spatial Transformations Modern OpenGL (and GLU) imple-
mentations basically dropped the direct matrix support (the so-called immediate
mode does not exist anymore, except in a compatibility context). So no more
calls to glTranslate, glRotate, glLoadIdentity or gluPerspective shall be
done; now the application has to compute such matrices (for model, view, tex-
ture, normal, projection, etc.) by itself (on the CPU), and the result thereof
can be send on the GPU, as input to its GLSL shaders (typically thanks to
uniform variables).

For that, applications may use dedicated, separate libraries, such as, in
C/C++, GLM, i.e. OpenGL Mathematics33 (Myriad’s linear support aims to
provide, in Erlang, a relevant subset of these operations - albeit admittedly in
a simplified form).

The matrices that correspond to the transformations to be applied are then
typically shared with the shaders thanks to uniform variables.

This is especially the case for the vertex shader, in charge of transforming
coordinates expressed in a local coordinate system into screen coordinates.

33GLM is a free software header-only, template-based C++ library. See its manual and
for example its implementation of 4x4 float-based matrices (and their corresponding type
definition). Note that, as GLM is targeted at OpenGL, by default it adopts column-major
internal conventions, leading to a somehow unfamiliar mode of operation.

102

https://gamedev.stackexchange.com/questions/22216/using-multiple-shaders
https://learnopengl.com/In-Practice/Debugging
https://github.com/dgud/wings/tree/master/shaders
https://www.lighthouse3d.com/tutorials/glsl-tutorial/geometry-shader-examples/
https://github.com/g-truc/glm
http://myriad.esperide.org/#spatial-support
https://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations
https://en.wikibooks.org/wiki/GLSL_Programming/Vertex_Transformations
https://en.wikibooks.org/wiki/GLSL_Programming/Vertex_Transformations
https://github.com/g-truc/glm/blob/master/manual.md
https://github.com/g-truc/glm/blob/master/glm/detail/type_mat4x4.inl
https://github.com/g-truc/glm/blob/master/glm/ext/matrix_float4x4.hpp
https://github.com/g-truc/glm/blob/master/glm/ext/matrix_float4x4.hpp

More precisely, the modeling (object-space to absolute, world-space), view-
ing (world-space to camera-space) and projection (camera-space to clip-space)
transformations are applied in the vertex shader, whereas the final perspective
division and the viewport transformation are applied in the fixed-function stage
after the vertex shader.

So a vertex shader is usually given two 4x4 homogeneous, uniform matrices:

• a modelview matrix, combining modeling and viewing, to transform object-
space to camera-space in one go

• a projection matrix

More Advanced Topics

Shadows Determining the shadow of an arbitrary object on an arbitrary plane
(representing typically the ground - or other objects) from an arbitrary light
source (possibly at infinity) corresponds to performing a specific projection.
For that, a relevant 4x4 (based on homogeneous coordinates) matrix (singular,
i.e. non-invertible matrix) can be defined.

This matrix can be multiplied with the top of the model-view matrix stack,
before drawing the object of interest in the shadow color (a shade of black
generally).

Refer to this page for more information.

Reference GLSL Compiler As always, different compilers (corresponding
to different brands of graphical cards) will not implement exactly the same way
the (OpenGL GLSL, here) specification; and a shader may work correctly on
one type of card and not on another.

Testing shader code with the OpenGL / OpenGL ES Reference Compiler,
a.k.a. glslang (installed on Arch Linux thanks to pacman -Sy glslang, to be
run as glslangValidator) may report interesting information.

See the OpenGL GLSL reference compiler section of this page for more
information.

Sources of Information

The reference pages for the various versions of OpenGL are available on the
Khronos official OpenGL Registry.

Two very well-written books, strongly recommended, that are still relevant
for 3D graphics despite their old age (circa 1996; for OpenGL 1.1) are:

• The Official Guide to Learning OpenGL: the OpenGL Red book

• The OpenGL Reference Manual : the OpenGL Blue book

More modern tutorials (applying to OpenGL 3.3 and later) are:

• Opengl-tutorial

• Learn OpenGL

• regarding GLSL shaders: lighthouse3d

103

https://www.glprogramming.com/red/chapter14.html#name15
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
https://learnopengl.com/In-Practice/Debugging
https://www.khronos.org/registry/OpenGL-Refpages/
https://www.khronos.org/registry/OpenGL-Refpages/
https://www.glprogramming.com/red/index.html
https://www.glprogramming.com/blue/index.html
http://www.opengl-tutorial.org/
https://learnopengl.com/
https://www.lighthouse3d.com/tutorials/glsl-tutorial/

Other elements of interest:

• the OpenGL 3.3 Specification (Core Profile) (the 425-page reference PDF)

• FAQ for OpenGL and GLUT

• the (archived) OpenGL FAQ and Troubleshooting Guide, containing much
valuable information, including regarding transformations

• About OpenGL Performance

• in French: Introduction à OpenGL et GLUT, by Nicolas Roussel

• any textbook on linear algebra

Operating System Support for 3D
Benefiting from a proper 2D/3D hardware acceleration on GNU/Linux is un-
fortunately not always straightforward, and sometimes brittle.

The very first step is to update’s one’s video drivers to their latest,
official stable version according to your OS/distribution of choice (even if
it implies using closed-source binaries...) and to check that they are in use
(probably rebooting is then needed; note that updating one’s kernel may also
make the hardware acceleration be lost until the next reboot).

Testing

First, one may check whether such acceleration is already available by running,
from the command-line and as the current, non-privileged user, the glxinfo
executable (to be obtained on Arch Linux thanks to the mesa-utils package),
and hope to see, among the many displayed lines, direct rendering: Yes.

One may also run our display-opengl-information.sh script to report relevant
information.

A final validation might be to run the glxgears executable (still obtained
through the mesa-utils package), and to ensure that a window appears, show-
ing three gears properly rotating.

Troubleshooting

If it is not the case (no direct rendering, or a GLX error being returned - typically
involving any X Error of failed request: BadValue for a X_GLXCreateNewContext),
one should investigate one’s configuration (with lspci | grep VGA, lsmod,
etc.), update one’s video driver on par with the current kernel, sacrifice a chicken,
reboot, etc.

If using a NVidia graphic card, consider reading this Arch Linux wiki page
first.

In our case, relevant installations could be done with pacman -Sy nvidia
nvidia-utils but required a reboot.

Despite package dependencies and a not-so-successful attempt of using DKMS
in order to link kernel updates with graphic controller updates, too often a
proper 3D support was lost, either from the boot or afterwards. Refer to our
software update section for hints in order to secure the durable use of proper
drivers.

104

https://www.opengl.org/registry/doc/glspec33.core.20100311.withchanges.pdf
https://www.khronos.org/opengl/wiki/FAQ
https://www.opengl.org/resources/libraries/glut/faq/
https://www.opengl.org/archives/resources/faq/technical/
https://www.opengl.org/archives/resources/faq/technical/transformations.htm
https://www.khronos.org/opengl/wiki/Performance
http://interaction.lille.inria.fr/~roussel/
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/display-opengl-information.sh
https://wiki.archlinux.org/title/NVIDIA
GNULinux.html#software-update

Minor Topics
Camera Navigation Conventions

Multiple tools introduced conventions in order to navigate, with mouse and
keyboard, in a 3D world.

We prefer the way Blender manages the observer viewpoint (current camera),
as described here; notably, supposing a three-button mouse with a scrollwheel,
basic navigation will be based on the middle button:

• orbit the view around the currently selected object (or Tumble)
by holding the middle button down and moving the mouse

• pan (moving the view up, down, left and right) by holding down Shift
and the middle button, and moving the mouse

• zoom in/out with the scrollwheel; a variation of it, Dolly, can be ob-
tained by holding down Ctrl and the middle button, and moving the
mouse

3D-Related Mini-Glossary
• HDRP: High Definition Render Pipeline, a high-fidelity scriptable render

pipeline, made by Unity to target modern (Compute Shader compatible)
platforms (so HDRP is the high-end counterpart of URP)

• IK: Inverse Kinematics, the computation of intermediary joint pa-
rameters so that the end of the kinematic chain is at a given position
and orientation; typically, if one wants the hand of a character to grasp
the top of a chair, IK is used in order to determine the parameters of the
character’s wrist, arm, elbow, etc. that may be retained so that the hand
is ultimately correctly placed on the chair (more information)

• Material: controls the optical properties of an object, i.e. how a 3D ob-
ject appears on the screen, that is: the color of each point of the object
(generally thanks to multiple texture maps, like diffusion, normal, specu-
lar, glow, etc.) and how reflective or dull its surface appears; designates,
with OpenGL, a set of coefficients that define how the lighting model
interacts with the surface; in particular, ambient, diffuse, and specular
coefficients for each color component (R,G,B) are defined and applied to a
surface and effectively multiplied by the amount of light of each kind/color
that strikes the surface; a final emissivity coefficient is then added to each
color component so that objects can also be light emitters

• NURBS: Non-Uniform Rational B-Spline, a mathematical model using
basis splines (B-splines) that is commonly used in computer graphics for
representing curves and surfaces, whose shape is determined by control
points (more information)

• PBR: Physically-Based Rendering designates approaches to render im-
ages in a way that models the flow of light in the real world, for
example thanks to photogrammetry; many PBR pipelines aim to achieve
photorealism; in practice they often rely on the micro-facet theory, with

105

https://docs.blender.org/manual/en/latest/editors/3dview/navigate/navigation.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@13.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@13.1/manual/index.html
https://en.wikipedia.org/wiki/Inverse_kinematics
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

specific materials (generally based on texture maps) and shaders (is also
called PBS, for Physically-Based Shading); PBR is slowly becoming the
standard for all materials

• PSD: Photoshop Document, a proprietary format for graphics with lay-
ers, masks, etc. used by Adobe Photoshop (a commercial counterpart to
Gimp, Krita, etc.) often used to store textures that may still be edited as
templates by the user - provided that they are using Photoshop as well;
however, at least to some extent, Gimp is able to edit PSD files and Krita
too

• Rigging (or Skeletal Animation) consists in controlling the deforma-
tion of a mesh (a.k.a. a skin, the surface of a body) of an articulated
object (typically a character) based on a virtual inner armature (a
hierarchical set of interconnected parts, called bones, collectively forming
the skeleton or rig) in order to animate that mesh (more information)

• Textures: bitmaps (images) used to skin 3D objects, by defining the
color of each point on the surface of the object in terms of texture coor-
dinates; besides such 2D textures, 1D, 3D and 4D ones exist

• Texture Atlas: a texture (an image) containing a set of separate,
elementary graphic elements, meant to be extracted based on texture
coordinates, akin to a sprite sheet; doing so is useful to reduce the overhead
that would be induced by the management of many smaller textures (more
information)

• URP: Universal Render Pipeline, a prebuilt scriptable render pipeline,
made by Unity, which implements workflows across a range of platforms,
from mobile to high-end consoles and PC (in practice URP is the low-end
counterpart of HDRP)

See also the Wikipedia’s glossary of computer graphics.

106

https://docs.fileformat.com/image/psd/
https://www.gimp.org/
https://krita.org
https://wiki.gimp.org/wiki/PSD_support
https://docs.krita.org/en/general_concepts/file_formats/file_psd.html
https://docs.krita.org/en/general_concepts/file_formats/file_psd.html
https://en.wikipedia.org/wiki/Skeletal_animation
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/
https://en.wikipedia.org/wiki/Glossary_of_computer_graphics

Online Interactive Multimedia
Organisation: Copyright (C) 2022-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Sunday, January 16, 2022

Lastly updated: Wednesday, March 19, 2025

Table of Contents
Overview . 100
Networking Subsystem 100

Standards . 100
Integrated Solutions . 101
Information Pointers . 102

Application Architecture 102

Overview
Here, "online interactive multimedia" could be seen as an euphemism for net-
worked video games, yet the topic may be a bit larger, including cases where
some kind of online, persistent, multi-user virtual world has to be simulated, for
example MMORPGs or any sorts of metaverse.

As for the topic of graphical 2D/3D rendering, it is specifically addressed in
this section.

Networking Subsystem
Various architectures can be considered for networked applications, from a to-
tally decentralised peer-to-peer one to a strict client/server one, possibly based
on an authoritative server (which is to perform most of the world evaluation by
itself, rather than delegating a part of this processing to clients).

Notably when an application is intensively interactive (e.g. a real-time strat-
egy game, as opposed as a turn-based one), compensating for the lag and jitter
induced by the network is a difficult technical challenge.

Dedicated solutions exist for that, either released as free software or com-
mercially, and they are all built from the same standards.

Standards

Network Protocols

IP In terms of low-level network carriers, ultimately all traffic will be con-
veyed of course by the IP protocol (on the Internet or even in a local network)
- but no one directly forges IP packets.

A little higher in the OSI model, communications will certainly be handled
by the TCP and/or UDP protocols (which are both implemented on top of IP).

107

https://en.wikipedia.org/wiki/Massively_multiplayer_online_role-playing_game
https://en.wikipedia.org/wiki/Metaverse
ThreeDimensional.html
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/OSI_model

TCP The TCP protocol offers strong guarantees to the application: in-
stead of thinking in terms of a stream of packets being sent (some possibly
being lost or corrupted in the process), TCP provides connections, i.e. reliable
bidirectional streams of bytes between two networked peers.

Yet this higher-level service comes at a price: latency. Indeed, under the
hood, TCP has to detect communication issues and overcome them, typically
by handling network congestion and requesting the re-emission of IP packets,
which have thus to be waited for and delay the whole communication.

Many algorithms have been fine-tuned to maximise the resulting bandwidth
and minimise the latency, yet of course guaranteeing a perfect communication
remains demanding.

UDP The UDP protocol will be preferred whenever having data to be sent
primarily with a low latency. As UDP packets can be lost or received in a order
different from the emission one (data corruption is not a real problem, thanks
to IP-level and UDP-level checksums), it is generally dedicated to transient,
fast-paced exchanges, where the loss of a packet can be just ignored, the next
ones making up for any lacking information with fresher data.

So UDP offers weaker guarantees, which is bound to increase the complexity
of the application.

Howeover, depending on the application needs, better guarantees can be
implemented on top of UDP, dealing with integrity, order and reliability. Of
course the closer to the guarantees of TCP requirements are, the higher the
cost of a UDP-based solution will be. Of course, if an application requires the
properties provided by TCP, just use TCP rather than trying to recode a poor
man’s version of it over UDP.

Other Protocols & Facilities They include the WebSockets (on top of
TCP) and WebRTC (Web Real-Time Communication).

A host of protocols are associated to WebRTC: SCTP (Stream Control
Transmission Protocol, typically for a data channel), RTP (Real-time Trans-
port Protocol) and SRTP (Secure RTP, typically for a media channel).

Middleware Their role is to marshall/demarshall application data so that it
can be sent over the wire, through the aforementioned protocols: the information
to sent through the network shall be transformed in a series of bytes that the
other end will be able to interpret, according to a data format (that is generally
cross-platform); this is a special case of serialisation/deserialisation.

A popular choice for that is Protocol Buffers (a.k.a. Protobuf).

Integrated Solutions

They provide a complete set of high-level services to be directly used by appli-
cations, implemented in libraries.

Free Software Solutions In this category, the main libraries that we spotted
are:

• Mirror: open-source, moreover with a permissive licence

108

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebRTC
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
https://en.wikipedia.org/wiki/Protocol_Buffers
https://mirror-networking.com/

• Bevy engine: a data-driven game engine implemented in the Rust language

• DarkRift 2: an high performance, multithreaded and open source net-
working system for Unity

The Godot game engine also offers interesting network services. Godot has
native support for Websockets, and libraries like Godobuf implement the decod-
ing/encoding of Protobuf messages.

Commercial Solutions As for commercial offers, in order to build multi-
player games in Unity, one may take into account Unity3D Multiplayer Net-
working (Netcode) or Photon Fusion, and their Unreal counterpart.

Information Pointers

Much expert information on these topics can be read from the articles of Gaffer
On Games.

As for Erlang-based servers, these posts are of interest: [1] and [2]. See also
this Demonware presentation, which offers a rich Erlang-related operational
feedback.

Application Architecture
The key topic here is synchronisation, i.e. how the game state is managed
so that all players can seamlessly access it and enjoy fair interactions. The
overall complexity increases drastically and multiplicatively on two dimensions
(scalability and real-time), and theoretical results proved that upper bounds
exist in that matter (see the CAP theorem and the FLP impossibility result).

For the core game (as opposed to backend services like authentication, chat,
lobbies, match-making, etc.), a trade-off must be found between:

• a centralised architecture, where a logical server is authoritative, i.e. the
sole controller of the truth

• a decentralised architecture, where the communication takes part mostly
between peers, the logical server (if any) being merely a relay

Such a trade-off is game-specific, depending a lot on the intended reactiveness
(consider a game of chess versus a frantic first-person shooter, where latency will
be measured in terms of dozens of milliseconds).

The centralised architecture is simpler (e.g. a single, reliable true state
exists; and by nature it better resists to cheating attempts), but it is more
resource-demanding (bandwidth but also processing power) and depends a lot
of the network-induced latency.

Some approaches like client-side prediction can hide a bit this problem; no-
tably, when the same software runs on both sides (headless server and clients),
the same logic can predictively result in the same evolution, which facilitates a
lot any anticipations made by the clients.

As for decentralised architectures, they require some consensus to be reached
between the peers involved, with a lack of trust to overcome. Not all peers have
to be equal, for example each game session may elect a game leader (typically

109

https://bevyengine.org/
https://www.darkriftnetworking.com/
https://docs.godotengine.org/en/stable/tutorials/networking/index.html
https://github.com/oniksan/godobuf
https://docs-multiplayer.unity3d.com/
https://docs-multiplayer.unity3d.com/
https://www.photonengine.com/
https://docs.unrealengine.com/5.1/en-US/networking-and-multiplayer-in-unreal-engine/
https://gafferongames.com/
https://gafferongames.com/
https://erlangforums.com/t/erlang-shall-power-the-metaverse/938/6
https://elixirforum.com/t/how-is-the-performance-of-elixir-in-game-backend-project/45142/4?u=kartheek
https://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Consensus_(computer_science)#The_FLP_impossibility_result_for_asynchronous_deterministic_consensus

the one enjoying the best overall connectivity with the other players): this host
will be both the server and a player. One way or another, reliance onto the
clients will be needed; short of being able to trust them, at least checking their
reports and auditing them will be needed.

110

Network Management
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Sunday, May 4, 2025

Table of Contents
Investigating Network Issues 103
Firewall Management . 103

Configuration of a Gateway to the Internet 103
Firewall-related Troubleshooting 105

Network Troubleshooting 107
See Also . 108

Investigating Network Issues
Tools like ping, traceroute, drill, arp, etc. are invaluable.

For example:

• to get all/most DNS records of a given domain, knowing that any requests
(e.g. dig +noall +answer +multiline TARGET_DOMAIN any) may be not
honored by some servers, we recommend using our list-dns-records.sh
script

• to perform a reverse DNS lookup (thus translating a given IP address into
a domain name), one may use: drill -x TARGET_IP.

Use ip-scan.sh to scans all IPs with any specified prefix, and ip-examine.sh
to collect information about a given IP.

Use monitor-network.sh to investigate unstable connections.

Firewall Management
On GNU/Linux, some level of knowledge about iptables is useful, notably if
exposing a computer to the Internet; note though that it is to be superseded by
nftables.

One should read first the very clear Arch wiki section about iptables ba-
sic concepts. See also man iptables-extensions to understand the extended
packet matching modules (triggered with the -m / --match options).

A general rule that we retain, especially for an Internet gateway, is to drop
all packets by default, and then only to accept the expected ones explicitly and
carefully.

111

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/list-dns-records.sh
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/ip-scan.sh
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/ip-examine.sh
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/monitor-network.sh
https://wiki.archlinux.org/title/Nftables
https://wiki.archlinux.org/title/iptables#Basic_concepts
https://wiki.archlinux.org/title/iptables#Basic_concepts

Configuration of a Gateway to the Internet

Our iptables.rules-Gateway.sh script sets up an iptables configuration with var-
ious services that can be enabled (e.g. for masquerading, IPTV, different kinds
of servers) as an example that we hope is secure enough34.

This script expects a settings file to be available as /etc/iptables.settings-Gateway.sh
(this file is meant to be sourced, not executed).

An example thereof:

Local firewall settings.
#
Meant to be sourced by the iptables.rules-Gateway.sh script.

Where firewall-related outputs will be written:
log_file=/root/.last-gateway-firewall-activation

Local (LAN) interface, the one we trust:
#lan_if=eth1
lan_if=enp2s0

Internet (WAN) interface, the one we distrust:

For PPP ADSL connections:
#net_if=ppp0

For direct connection to a set-top (telecom) box from your provider:
#net_if=eth0
net_if=enp4s0

ban_file="/etc/ban-rules.iptables"

As the IPs banned through the ban file above are quite minimal:
use_ban_rules="true"
#use_ban_rules="false"

IP of a test client (to avoid too many logs, selecting only related events):
#test_client_ip="xxx"

Enabled input TCP port range for traffic from LAN to gateway:
enable_unfiltered_tcp_range="true"

TCP unfiltered window (e.g. for passive FTP and BEAM port ranges):
tcp_unfiltered_low_port=50000
tcp_unfiltered_high_port=55000

Tells whether IPTV (TV on the Internet thanks to a box) should be allowed:
enable_iptv=false

Tells whether a SMTP server can be used:

34Please email us if you found otherwise! Refer to the top of this document for that.

112

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/iptables.rules-Gateway.sh

enable_smtp=false

Typically a set-top box from one’s ISP (defined as a possibly log match
criteria):

Classical example:
telecom_box="192.168.0.254"

DHT subsection, for P2P exchanges:
More infos: https://github.com/rakshasa/rtorrent/wiki/Using-DHT

dht_udp_port=7881

#use_dht="true"
use_dht="false"

One may use a non-standard port:
#ssh_port=22
ssh_port=22320

smtp_port=25

SMTPS is obsolete:
smtp_secure_port=465

STARTTLS over SMTP is the proper way of securing SMTP:
msa_port=587

pop3_port=110

POP3S:
pop3_secure_port=995

imap_port=143
imap_secure_port=993

A script to configure iptables is best integrated to systemd, see the iptables.rules-
Gateway.service file for that (typically to be placed in /etc/systemd/system).
Then one may test with:

$ systemctl start iptables.rules-Gateway.service

and enable it for good with:

$ systemctl enable iptables.rules-Gateway.service

Note that often these scripts are setup remotely, while being connected
thanks to SSH from another host. Care must be taken in order not to lock
oneself out of the target server, notably when updating rules (this happens
quite easily). We advise to prefer the restart option of our iptables script in
order to reduce the risk of "bricking" one’s server.

113

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/iptables.rules-Gateway.service
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/iptables.rules-Gateway.service

Firewall-related Troubleshooting

Use iptables-inspect.sh to list the currently-used firewall rules for the chains of
the main tables. Like iptables -nL --line-numbers35, it displays the number
of each rule of a given chain, which allows to add/remove rules more easily, like
in:

Deletes the first rule of the FORWARD chain (of the ’filter’ table):
(note that all the next rules will bear a decremented number afterwards!)
$ iptables -D FORWARD 1

Setting environment variables (either through files such as /etc/iptables.settings-Gateway.sh
or directly in the shell) is less error-prone; e.g.

[...]
$ lan_if=enp2s0
$ net_if=enp4s0
$ iptables -I FORWARD -i ${lan_if} -o ${net_if} -d ${telecom_box} -j LOG
$ journalctl -kf --grep="IN=.*OUT=.*" | grep -v "SRC=${telecom_box}"

To further match packets, one may specify log prefixes, like in:

$ iptables -A INPUT -i lan.foobar -j LOG --log-prefix "[VLAN INP FOO]"

Note that the LOG target does not intercept a packet, which thus continues
to flow in the next rule(s). so log targets are better defined as first rules (and
thus could be inserted lastly).

As a reminder, for a given table (filter by default), rules may be:

• appended at the end of the selected chain with -A (then of course any
previous rule may eclipse it)

• inserted either at the beginning of the selected chain with -I, or at its
position N with -I N

Therefore, just for the sake of testing a safe interface foo, to short-circuit
all previous input rules for TCP, one may execute iptables -I INPUT -i foo
-p tcp -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT to ensure
that the host will accept from now on all (valid) incoming TCP packets; then
use iptables -D INPUT 1 to remove that rule and/or, even better, run your
stateless firewall initialisation script to ensure that the base configuration has
been correctly restored.

Adding/removing rules "safely" from the command-line may be done more
easily by rule specification rather than by rule position.

For example removing a given rule can be done:

• by first listing all rules thanks to iptables -S, to pick the one of interest

35Note that unfortunately this command does not display interface information, which can
be quite misleading; the output of our script is more precise and thus should be preferred.

114

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/iptables-inspect.sh

• by removing the prefix (typically -A) of the spec, and pasting the rest of
that spec after iptables -D in order to remove the corresponding rule

Putting back this rule at the first position on its chain instead is just a
matter of using iptables -I and the same shortened spec.

So, for example if wanting to silence an untrusted device (e.g. some "smart"
box, a netcam of dubious origin), an approach is to:

• determine its MAC address and associate a static IP to it; for example, if
using dnsmasq, in /etc/dnsmasq.conf one may define dhcp-host=30:ef:50:36:54:68,10.0.17.203,
so that the IP 10.0.17.203 is always assigned to the device of MAC ad-
dress 30:ef:50:36:54:68

• define a firewall rule so that one’s gateway never forwards outgoing pack-
ets from that (local) IP, for example with: iptables -I FORWARD -s
10.0.17.203/32 -i my_lan_interface -j DROP

See also:

• our filtered_local_hosts section of iptables.rules-Gateway.sh, the hosts
being filtered out based on the ones specified in the setting_file config-
uration file

• the iptables section in the Arch wiki.

Network Troubleshooting
A few pieces of advice/information:

• be familiar with ip link, ip addr and ip route (generally used in that
order), and tcpdump for the worst cases

• to resolve a DNS hostname, i.e. to obtain its IP from its name: dig
+short my.host.in.domain.tld | tail -n1

• to review host-local open ports and sockets, use:

– ss (for socket statistics, replacement of netstat), e.g. to deter-
mine which program is running at TCP port #8080: ss --inet
--listening -np | grep :8080

– netstat could be for example netstat -ltnp | grep :8080

– lsof -i :8080

– fuser 8080/tcp, before looking up the returned PID

• for remote testing of open ports and sockets, use nmap

• nowadays, many devices change their MAC address regularly, like smart-
phones do

• one may rely on netctl, and create as many profiles as found useful

• regularly inspect network-related messages (e.g. with journalctl -kf)
to detect anomalies such as IPv4: martian source 192.168.0.49

115

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/ef6239b6ca1659ccd479d58b38eb79632b86842f/iptables.rules-Gateway.sh#L674
https://wiki.archlinux.org/title/iptables

• interfaces may be associated to any number of IP addresses, this may
create surprises

• when a network does not work properly, always consider that this device
may be faulty, that cables may malfunction, and that power supplies may
be culprits

• having smart switches may help a lot, to better control one’s network (e.g.
disabling ports, checking statuses, isolating sections, etc.)

• beware to DHCP server(s) being left unnoticed; various devices may use
them to get a random address and become difficult to spot

• netmasks shall not be neglected, for example in routes:

$ ip route add 192.168.0.0/16 dev enp4s0 scope link
$ ip route
default via 192.168.0.254 dev enp4s0 proto dhcp src 192.168.0.1 metric 1002
10.0.0.0/8 dev enp2s0 proto kernel scope link src 10.0.0.1
192.168.0.0/16 dev enp4s0 scope link

Here for example, in 192.168.0.0/16, 16 corresponds to the length of the
network prefix ; the next 16 bits are left to designate hosts, whose addresses
therefore range in 192.168.[0..254].[1..254]. So 192.168.0.0/16 includes
the 192.168.27.0/24 network - whereas 192.168.0.0/24 would not.

• go for VLAN only when having reached a first level of correct operation;
note that some devices (e.g. non-manageable switches) are not able to
handle VLAN-tagged packets and may reject or overwrite this information

• in some cases, hard reboots / returns to factory settings will fix inex-
plicable situations; updating to latest firmware may help too (network
appliances do have bugs as well!)

• secure spare parts (if possible all cables, fibers, devices, power supply, etc.
shall exist at least in two copies, tested just after purchased): when the
one in operation will fail, the outage will be quickly solved by switching
element; the troubleshooting will be easier as well: replace the whole set
of equipment, check that everything works again, and try to progress by
dichotomy (change half of the elements, and check whether everything
remains functional)

• purchase only equipment of quality, and treat it gently (e.g. use an Unin-
terruptible Power Supply providing good-quality current)

• take notes about the operations that are performed, the detected issues
and the current configuration, and put the whole in VCS

• check temperature, ventilation and prevent dust accumulation

• consider monitoring temperatures, fans, availability, performances

116

See Also
• Ceylan-Hull’s section about scripts for network management and for fire-

wall configuration

• A bit of Cybersecurity

117

http://hull.esperide.org/#network-management
http://hull.esperide.org/#network-management
http://hull.esperide.org/#network-management
Cybersecurity.html

A Bit of Cybersecurity
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Wednesday, March 19, 2025

Table of Contents
Pointers to various Security Topics 109
Authentication Using SSH 109
Securing One’s E-mail Service In General 110
Increasing Security thanks to OpenPGP 111

Purpose . 111
Technical Solution . 111

Obtaining One’s Keys 111
Where are the Keys, and How to Backup Them? . . 113
How Can Public Keys be Shared? 115
What can be Done with these Keys? 117
Updating Your Keys 118
Deleting Your Keys 120

A Corresponding Cheat Sheet 120
Root Key . 120
Subkeys . 120
Prepare Revocation 121
Finally . 121

Hints . 121
Obtaining my Current Public Key 121
See Also . 122

A Link With Decentralized Identifiers 122

Pointers to various Security Topics
A goal here is to favor cryptographic privacy and authentication for data com-
munication.

More precisely:

• for data storage (be it a USB key or a SSD disk), it may translate to
partition encryption, typically with LUKS2 and cryptsetup

• individual files may be encrypted/decrypted with the help of appropriate
scripts; see also Ceylan-Myriad’s support for additional basic, old-school
ciphering

• for the management of credentials such as passwords, some Ceylan-
Hull scripts may be of help, including for the generation of proper pass-
words or for the locking of screens

118

https://wiki.archlinux.org/title/Dm-crypt/Encrypting_an_entire_system#LUKS_on_a_partition
https://hull.esperide.org/#for-encryption
http://myriad.esperide.org/#for-basic-old-school-ciphering
http://myriad.esperide.org/#for-basic-old-school-ciphering
https://hull.esperide.org/#for-security
https://hull.esperide.org/#for-security

• regarding network, each host may be protected by a relevant firewall
configuration, opened ports may be checked, etc.; see also our section for
firewall management

• for webservers, it relates to use the HTTPS protocol with proper X.509
security certificates for TLS-secured exchanges, possibly thanks to Ceylan-
LEEC

• for emails, see the section about OpenPGP below

Authentication Using SSH
This is certainly the right approach to rely on nowadays (e.g. no more HTTPS
with a .netrc file).

To generate a key pair, one may use ssh-keygen and prefer for example the
ED25519 cipher; for example, if wanting to use a specific key filename:

$ KEY_PATH="~/.ssh/id_ed25519-${USER}-for-general-use-$(date ’+%Y%m%d’)"
$ ssh-keygen -t ed25519 -C "General, personal key notably for VM connections, generated on $(LC_ALL= date ’+%A, %B %-e, %Y’), on $(hostname -f)." -f "${KEY_PATH}"

One may:

• specify a passphrase (which would then be requested at each use of the
private key), or not

• not specify a file name, if the new key would not collide with any pre-
existing one

Then the corresponding public key may be transferred to any target host,
like in:

$ ssh-copy-id -i "${KEY_PATH}" foobar.org

(it would be then the unique time for this host that the user general password
on the target host would be requested)

and/or declare it in any web interface (e.g. GitLab) of interest (associating
to one’s user one’s public key).

In a Git clone, any specific key name must be specified, typically with:

$ git config core.sshCommand "ssh -o IdentitiesOnly=yes -i ${KEY_PATH} -F /dev/null"

Securing One’s E-mail Service In General
Now that electronic exchanges are central to most communications, controlling
one’s e-mail services is of paramount importance.

It is a real pity that most individuals will not be able in practise to run their
own mail server (Message transfer agent), short of being able to setup through
their Internet provider a proper reverse DNS information (as any e-mail that
such a home server would emit would likely be considered as spam/junk mail
by the recipients).

119

https://hull.esperide.org/#firewall-configuration
https://hull.esperide.org/#firewall-configuration
Networking.html#firewall-management
http://leec.esperide.org
http://leec.esperide.org
https://en.wikipedia.org/wiki/Message_transfer_agent
https://en.wikipedia.org/wiki/Reverse_DNS_lookup

So one will have to resort to third-party e-mail services ("MX plan"). We do
not see the reliance on one’s Internet provider e-mail solution as a good choice
(even if being able to make use of such an address regardless of any active
subscription to that provider), possibly not all registrars are also good email
hosters, and surely we do not want to depend on any GAFAM-related service.

The last remaining solution is therefore to elect a dedicated provider of e-
mail hosting, which most of the time incurs monthly fees, albeit rather low (e.g.
1 euro per month).

In that case we strongly recommend:

• choosing an e-mail hosting that supports for real SPF, DKIM and DMARC,
and a catch-all in terms of incoming e-mail addresses (we see all these as
hard requirements; an example of a corresponding provider being, cer-
tainly among others, Mailo - although we would have liked that it sup-
ported as well MTA-STS for an increased security, including for OpenPGP;
refer to these information to better understand the interest of MTA-STS;
DANE and DNSSEC would be also of interest)

• purchasing (actually leasing) one’s domain name (like foobar.org), in or-
der to obtain (hopefully life-time) e-mail address(es) (e.g. john.doe@foobar.org);
this is another little expense, around 10-15 euros per year, yet it opens
many other interesting opportunities (starting with the possibility of host-
ing one’s webserver and other online services)

Wanting to test whether your current e-mail system is reliable? We recom-
mend using the MECSA online testing tool, which is provided by the European
Commission and allows to learn a lot about the level of security reached by one’s
email system.

Increasing Security thanks to OpenPGP
Purpose

Albeit such a securing scheme may apply to at least most of the digital ex-
changes, in practice it is mainly used in the context of email security.

In the general case, sending an email will end up having its content stored
at least on:

• your disk

• a disk of one of the servers of your Internet provider

• a disk of a server of the provider of the recipient

• the recipient’s host

Possibly with intermediate organisations between the endpoint ones, possi-
bly stored on several locations per organisation - possibly times the number of
specified recipients.

Moreover many countries require by law that emails are stored by Internet
providers durably (often at least for one year) - not to mention the large-scale
data harvesting that many countries perform, officially or not, with their own
measures, on their own territory or on the one of others.

120

https://www.mailo.com/
https://keys.openpgp.org/about/faq#email-protection
https://mecsa.jrc.ec.europa.eu

That’s a rather large number of copies for one’s private correspondence - to
the point that emails sent in clear text could be mostly considered as public.
Not to mention that they could also be altered in the process, at some point(s)
in the chain.

Common solutions exist to ensure that a given mailserver is indeed in charge
of a given domain name (SPF), that a given email originates from a given
mailserver and has not been tampered with (DKIM) and that any non-conformance
can be managed according to a policy recommended by the emitter (DMARC),
but none is about the privacy of your messages.

Encrypting and signing are solutions to restore some privacy and
safety - yours, but also the ones of the persons with whom you happen to
correspond.

Technical Solution

It is currently best done thanks to the OpenPGP open standard for encrypting,
signing and decrypting data and communications.

GnuPG (GNU Privacy Guard) is a complete and free implementation of it
(we suppose here that at least its 2.2.* version is used).

The corresponding command-line executable, gpg, can be installed on Arch
Linux with: pacman -Sy gnupg.

Obtaining One’s Keys A first step is to generate locally one’s key pair,
knowing that each public key is bound to a username or an e-mail address
(which is our preference; having one’s domain name allows to create any number
of them).

A nice feature of this cryptographic scheme is that one may issue any number
of keys in full autonomy, and with neither consequences nor cost. So as many
key pairs as notions of "unrelated identities" may be freely created.

Several settings can be chosen when generating a key, and logically the
strongest keys are preferred. Yet uncommon/too recent generation algorithms
and/or higher key lengths may not be supported by the various tools36, so ap-
plying the default settings retained by gpg, or similar ones yet a bit stronger
(e.g. at the time of this writing, November 2021, RSA 4096 bits rather than
3072 bits) is probably the way to go (it can already be deemed safe, and will be
widely supported); so the generation may be best triggered simply thanks to:

For current defaults:
$ gpg --gen-key

Or, for more control:
$ gpg --full-gen-key

If preferring rather paranoid settings, presumably for an extra security/durability,
one can select ECC (for Elliptic-curve cryptography), with the Sign, Certify

36With "cutting-edge" settings, some tools (like Thunderbird) on your side and/or the email
clients of your recipients may be unable to make use of the resulting keys, and may fail to
report clearly that they actually do not support this algorithm or its parametrisation. So
one may consider sticking to reasonable gpg defaults, or use paranoid settings only for a
fully-private primary key whence actual work keys are derived.

121

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
https://wiki.archlinux.org/title/GnuPG
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

and Authenticate capabilities enabled (even if authentification is not used by
many common protocols), and opt for the Brainpool P-512 curve through:

$ gpg --full-gen-key --expert

In all cases, one may enter 1y to set the initial validity duration of the
generated key to one year, and already plan in one’s agenda, a dozen days
before the end of its validity, its renewal.

Then one may enter one’s selected identity (e.g. for Real name, one may
enter James Bond), one’s email address of interest (e.g. james.bond@mi6.org)
and possibly:

• either no specific comment (they are not normalised anyway)

• or one pointing to an authoritative source against which the public key
may be verified (such as: This public key can be verified against
its reference in https://mi6.org/james-bond.pub. - provided of
course that such a file exists)

The requested passphrase only consists on a last-resort protection of the
generated private key (that you should never transmit to anyone), in order to
avoid that anyone accessing this file on your computer becomes directly able to
fully impersonate this identity.

The operation generates a public/private key pair, and also an associated
emergency revocation certificate, so that you can invalidate it at any time and
for any reason:

gpg: key 9A60ADA4E151B8B5 marked as ultimately trusted
gpg: directory ’/home/james/.gnupg/openpgp-revocs.d’ created
gpg: revocation certificate stored as ’/home/james/.gnupg/openpgp-revocs.d/C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5.rev’
public and secret key created and signed.

pub brainpoolP512r1 2021-11-26 [SCA] [expires: 2022-11-26]
C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5

uid James Bond <james.bond@mi6.org>

Here C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5 is the full fingerprint
of the public key; it could be shortened to its 8, if not 4, last characters
(long/short ID), yet it would expose to the forging of intentionally-colliding
keys, so one should only designate a key based on its full fingerprint, and forget
unsafe abbreviations.

The public key can be freely shared, whereas the private one and the revoca-
tion certificate must be equally well protected (preferably in multiple, different
places).

The only well-known threats to these keys are either a flaw (intentional
loophole or accidental weakness) in the cryptographic algorithms on which they
rely, or the advent of major research progresses such as quantum computing. Yet
it still remains possible for one to "upgrade" one’s key with newer algorithms
(a new key superseding an older one that is to be revoked afterwards), so as
always it will be a never-ending struggle between the spear and the shield, i.e.
attack and defense.

122

As signing and encrypting correspond to different use cases, having different
keys for each may make sense. But instead of generating two unrelated keys,
one shall create:

• first an infrequently-used, very-well protected (hence less accessible), signing-
only "master" (primary) key of longer validity (one’s actual identity)

• then at least two subkeys (deriving from the previous one, yet autonomous):

– one for everyday encrypting ; a proper subkey has already been auto-
matically created and used by gnupg

– an extra one for everyday signing : such a subkey may be created with
a sufficient lifespan so that past signatures can be durably verified

These "derived" subkeys are meant to change more frequently, to be able to
be revoked independently, and thus are safer to expose in less secure systems.

Use gpg --edit-key and addkey in order to add a subkey to a key, and
refer to this section to export the subkey.

See also these very relevant Debian guidelines for further information about
subkey management.

Where are the Keys, and How to Backup Them? The full gpg state is
stored by default in its ~/.gnupg/ tree.

One may notably notice in it:

• the private keys, whose extension is .key and whose security is of course
of paramount importance

• the revocation certificates, whose extension is .rev, in order to revoke
one’s corresponding key pair (as important as the related private key)

• certificate revocation lists, to consider that the corresponding certificates
are valid yet shall not be trusted

• the sets of keys ("rings") containing the public keys that have been trans-
mitted to you, gathered according to the level of trust that you dedicated
to them

The public keys are usually given a .pub extension37.
Even if a backup of one’s key pair could be made by creating and encrypt-

ing an archive of this gpg filesystem tree, a far better solution is to use its
integrated procedure, as the structure of its internal state may change from a
version/platform of gpg to another. So the best course of action is to use the
following command in order to generate a backup of a key pair in a standard,
durable form:

$ gpg -o $(date ’+%Y%m%d’)-full-key-backup-for-james.bond-at-mi6.org.gpg --export-secret-keys james.bond@mi6.org

37Other common extensions are .gpg (for encrypted content and also standard signatures),
.asc (for clear-text signatures and other ASCII content), and .sig (for detached signatures).

123

https://wiki.archlinux.org/title/GnuPG#Exporting_subkey
https://wiki.debian.org/Subkeys
https://en.wikipedia.org/wiki/Certificate_revocation_list

This will produce a half-kilobyte file containing the full key pair, whose type
is:

20211126-full-key-backup-for-james.bond-at-mi6.org.gpg: OpenPGP Secret Key Version 4, Created Fri Nov 26 21:52:31 2021, ECDSA; User ID; Signature; OpenPGP Certificate

Of course, so that it may be used in the future, this backup of (notably) the
private key should not be encrypted with that same key.

Specifying in filenames the email address may be avoided, in the sense that
rather than having multiple keys (e.g. as many as email accounts), it is often
more convenient to have a single key supporting multiple names/addresses (see
the section about subkey below); so:

If using fingerprints and potentially having multiple registered email
accounts, just focusing on their common identity:
#
$ gpg -o $(date ’+%Y%m%d’)-full-key-backup-for-james.bond.gpg --export-secret-keys C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5

A backup of the revocation certificate shall be done as well (knowing that
by design it is not password-protected, and thus having access to this certificate
is sufficient to be able to kill your key), preferably in a different location, as the
role of this certificate is to serve as an urgent safety measure should the private
key be lost (non-emergency revocations should be performed thanks to the more
adapted and informative --generate-revocation option instead).

For long-term auxiliary storage, such a backup can be printed (on paper),
possibly thanks to Paperkey (installed on Arch with pacman -Sy paperkey).
For example:

To print directly:
gpg --export-secret-key my_key_fingerprint | paperkey | lpr

To store first (less secure):
gpg --export-secret-key my_key_fingerprint | paperkey --output my_key_fingerprint.asc

Such exports are ASCII texts, but they can also take the perhaps more
convenient (and maybe less secured if having to trust one’s smartphone) form
of a QR code:

$ gpg --export-secret-key my_key_fingerprint | paperkey --output-type raw | qrencode --8bit --output my_key_fingerprint.qr.png

Besides key pairs, following backups shall be done:

• the known public keys, thanks to: gpg -o $(date ’+%Y%m%d’)-known-public-keys.gpg
--export

• the associated level of trust (level per public key): gpg --export-ownertrust
> $(date ’+%Y%m%d’)-openpgp-trust.txt

124

https://wiki.archlinux.org/title/Paperkey

How Can Public Keys be Shared? As mentioned, public keys can be freely
shared without involving any specific risk, as in practice a private key cannot
be derived from its public counterpart.

So basically any means of sharing them is legit, including the least secured
ones. However the point is that their recipients must be sure that they obtained
the right public certificate, and not one that has been tampered with.

Indeed, any man-in-the-middle M between peers A and B able to intercept
the communication of A’s public key could replace it by his. B would then have
no means of detecting that it is actually relying on M’s keys rather than on A’s
ones.

So, on top of the generation of key pairs, a safe mechanism to share public
ones shall be carefully considered, to establish the authenticity of the binding
between a public key and its owner. Such mechanisms exist in two forms, peer-
to-peer ones, or centralised ones.

Decentralised Sharing The Web of trust is a decentralized trust model,
which - like Internet federates a large number of computer networks - is to
federate trust networks.

A user may have multiple key pairs, and each of the corresponding public
keys may be known of various trust networks.

The trust conceded by identity A to identity B means that A endorses the
association of the public key of B with the person or entity listed in its certificate.

The goal is to enable the emergence of some level of global trust from the
trust that each given identity concedes to the various identities that it knows
directly.

Trust is indeed to be spread, by extending it from peer to peer (or friend
to friend) in an increasingly large network of trust, typically with trust levels
that decrease with the number of peers that have to be traversed in the network
before reaching a given identity: you may trust friends of your friends, albeit
probably a bit less than your direct friends; networks of trust may reflect that
increasing risk, typically based on mean shortest distance between endpoints.

In practice, if A expresses some level of trust to B, A will digitally sign (thus
with its own private key) the public certificate of B, to assess its association
with the identity it embeds. This is commonly done at key signing parties (a
nice way of meeting likely-minded folks as well).

Various schemes for vetting (validating in practice the identity carried by B;
e.g. should we request B to show their identity card, to prove they control a
given domain, or any other identity/ownership proof?) and voting (to decide
on the overall trust to be derived from a potentially conflicting set of peer-to-
peer endorsements A1, A2, etc. about B) exist; one remains of course free to
decide for oneself on which grounds one concedes trust, it is the beauty of a
decentralised mode of operation.

In practice, the sharing of public certificates used to be done through SKS key
servers; it is as simple as requesting gpg to send the public key that corresponds
to the specified fingerprint (here its last 8 characters):

$ gpg --send-keys E115A8B5
gpg: sending key 9D60ADA5E115A8B5 to hkps://keyserver.ubuntu.com

Note that this sharing discloses the corresponding email address, and thus
exposes it to spam.

125

https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Key_server_(cryptographic)
https://en.wikipedia.org/wiki/Key_server_(cryptographic)

As various issues threaten SKS-based solutions, public keys may also be sent
to the Hagrid-based OpenGPG server, keys.openpgp.org (which is not repli-
cated to peer servers, yet performs more verification of the issuer of registered
certificates).

To do so, register first this server in your configuration:

$ echo "keyserver hkps://keys.openpgp.org" >> ~/.gnupg/dirmngr.conf

Reload gpg daemon:
$ gpgconf --reload dirmngr

Extract the public key of interest in a .pub file:
$ gpg -o $(date ’+%Y%m%d’)-james.bond-at-mi6.org.pub --export james.bond@mi6.org

This file shall be uploaded via this web page that will guide you through the
verification process, i.e. sending an email to the electronic address embedded
in the transmitted public key in order to check that it is legit (by waiting for
you to visit the URL that it generated and specified in said email); apparently
uploading each public key separately (if multiple ones are associated to a given
master key) shall be preferred so that they can be found by a look-up based on
an electronic address.

More generally, various keyservers are looked up by gpg and thus can be con-
sidered (with different configurations regarding federation, verification, ability
to forget keys, etc.).

Afterwards anyone will be able to search for such key:

$ gpg --search-keys james.bond@mi6.org
gpg: data source: https://keys.openpgp.org:443
(1) James Bond <james.bond@mi6.org>

512 bit ECDSA key 9A60ADA4E151B8B5, created: 2021-11-26

Of course checking that only one match is returned is important in order to
detect spoofing attempts.

Specifying your OpenPGP fingerprint in your email footers offers little inter-
est, as your recipients cannot be sure that such incoming emails have not been
tampered with (except if DKIM is used).

So ultimately one will have either to trust such a decentralised scheme, or
to trust a central authority like discussed next.

Centralised Sharing A centralized trust model is based on a Public Key
Infrastructure (PKI, usually based on the X.509 standard), which relies exclu-
sively on a Certificate Authority (CA), or more often a hierarchy of such: a CA’s
certificate may itself be signed by a different CA, all the way up to a self-signed
root certificate.

So a certificate chain has to be validated, knowing that tools like browsers,
and operating systems alike, come with their own keystore already comprising
root certificates, and regularly updating them.

These certificates are well protected, yet any compromising thereof may
jeopardise their whole "subtree".

126

https://en.wikipedia.org/wiki/Key_server_(cryptographic)#Problems_with_keyservers
http://keys.openpgp.org/upload
https://en.wikipedia.org/wiki/Key_server_(cryptographic)#Keyserver_examples
https://wiki.archlinux.org/title/GnuPG#Key_servers
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure

Sharing Largely So a public certificate can be spread as widely as wanted,
through key servers / PKIs, but also it should be shared through any reliable,
authoritative reference of a given identity, like one’s own webserver, emails,
social accounts, etc.

This can be directly your public certificate (here is mine)38 or a (shorter)
fingerprint thereof (e.g. the full fingerprint of my key is B8235ECE469EB77F).

Such public keys can be listed and then obtained respectively thanks to:

$ gpg --list-keys james.bond@mi6.org
pub brainpoolP512r1 2021-11-26 [SCA] [expires: 2022-11-26]

C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5
uid [ultimate] James Bond <james.bond@mi6.org>

For a binary version of the public key:
$ gpg -o james-bond.pub ---export C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5

For an ASCII-based version (e.g. suitable to register in GitHub):
$ gpg -o james-bond.pub.asc --armor --export C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5

What can be Done with these Keys? One may:

• encrypt a file: gpg -r james.bond@mi6.org -e my_file_to_encrypt;
this generates a my_file_to_encrypt.gpg file

• sign a file, with three possibilities:

– --sign / -s to generate a file containing both the input file (wrapped
in an OpenPGP packet) and the signature

– --clear-sign to generate a file containing both the input file (ver-
batim, expected to be a text file) and the signature

– --detach-sign / -b to only generate a file containing said signature;
so the input file will be needed in this mode to verify that signature;
this possibility is useful when distributing content (e.g. binaries), so
that the intended public can check the signature if wanted

• decrypt and possibly in the same movement check the signature of a
file: gpg -d my_file_to_decrypt.gpg (everything will be output to the
standard stream)

• verify a signature: see the --verify option for the 3 types of signatures

• verify signed emails:

– import the public key of the sender: gpg --search-keys dr.no@foobar.org

– determine whether it is valid and, more importantly, deserving trust
(is it the right public key?); if yes, sign it with gpg --edit-key
dr.no@foobar.org

38Note the HTTPS certification.

127

https://esperide.com/olivier-boudeville.pub

• import keys (yours or not) in your email client; if using a (recent) Thun-
derbird, no plugin is needed, but the local gpg rings will not be used
by Thunderbird; refer to this documentation, unless special measures are
taken

• access to online services, such as GitHub, GitLab, etc., typically to
sign commits

• encrypt and/or sign emails

Updating Your Keys Keys are meant to expire, so that they are updated
as technology progresses.

Typically tools (e-mail clients like Thunderbird) will notify the user whenever
once of their registered key is out of date.

To check whether one’s (secret) keys expired:

$ gpg --list-secret-keys --keyid-format LONG
[...]
sec brainpoolP512r1/3D60ADA5E251A8B5 2021-11-26 [SCA] [expired: 2022-11-26]

C3987680AD9B79FDC6B7D25C9D60ADA5E115A8B5
uid [expired] James Bond <james.bond@mi6.org>
[...]

Below the method to update keys (primary or subkeys) is described; once
done, the new versions can be published (see the Decentralised Sharing section)
and then found by tools (typically e-mail clients like Thunderbird), which can
be requested to search for them in key servers.

Update a Primary Key So here the primary key 3D60ADA5E251A8B5
expired and shall be renewed; let’s extend it of two years, and proceed interac-
tively, based on its KEYID:

$ gpg --edit-key 3D60ADA5E251A8B5
Secret key is available.

sec brainpoolP512r1/3D60ADA5E251A8B5
created: 2021-11-26 expired: 2022-11-26 usage: SCA
trust: ultimate validity: expired

[expired] (1). James Bond <james.bond@mi6.org>

gpg> expire
Changing expiration time for the primary key.
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 2y

Key expires at Wed 01 Jan 2025 12:40:27 PM CET

128

https://support.mozilla.org/en-US/kb/openpgp-thunderbird-howto-and-faq#w_i-have-never-used-openpgp-with-thunderbird-before-how-do-i-setup-openpgp
https://blog.nicohood.de/use-thunderbird-78-with-system-gnupg-keyring

Is this correct? (y/N)

sec brainpoolP512r1/3D60ADA5E251A8B5
created: 2021-11-26 expires: 2025-01-01 usage: SCA
trust: ultimate validity: ultimate

[ultimate] (1). James Bond <james.bond@mi6.org>

gpg> trust
gpg> save

Update Subkeys Here let’s suppose that we created 4 subkeys from a
primary one: K1 dedicated to signing, K2 to encrypting, K3 to authenticating
and K4 (typically to be declared to your e-mail client) to perform these three
operations.

The lifespan of these subkeys has been chosen relatively small, 2 years, and
intentionally smaller than the primary key they derive from.

Let’s extend their lifespan of 2 more years, by selecting them all:

Based on primary one:
$ gpg --edit-key 3D60ADA5E251A8B5
sec brainpoolP512r1/54EC65AAE18A5162

created: 2023-01-02 expires: 2029-01-21 usage: C
trust: ultimate validity: ultimate

ssb rsa4096/K1**************
created: 2023-01-02 expires: 2027-01-22 usage: S

ssb rsa4096/K2**************
created: 2023-01-02 expires: 2027-01-22 usage: E

ssb rsa4096/K3**************
created: 2023-01-02 expired: 2025-01-01 usage: A

ssb rsa4096/K3**************
created: 2023-01-02 expired: 2025-01-01 usage: SEA

Select these subkeys (they are then listed with a star):
$ key K1**************
$ key K2**************
$ key K3**************
$ key K4**************
$ expire
2y
save

Deleting Your Keys Typically if having expired keys not intended to be
renewed:

$ gpg --delete-secret-key KEYID

A Corresponding Cheat Sheet

Root Key Create a master key that will never leave one’s network, thanks to
gpg --expert --full-generate-key:

129

• with a strong algorithm (e.g. Brainpool P-512, by selecting ECC (set
your own capabilities))

• only able to certify (C) - not sign (S) or authenticate (A) - thus switch off
the sign capability

• with a rather long lifespan (e.g. 6 years, hence 6y)

• with a relevant comment (e.g. this public key can be verified against
its reference in https://mi6.org/james-bond.pub), as subkeys will
inherit it

Possibly add other identities (typically email addresses), with gpg --edit-key,
adduid, then uid 2, trust, uid 2 (to unselect), primary (for uid 1) and save.

Sign this new key with any past one:

$ gpg --default-key OLDKEYID --edit-key NEWKEYID
gpg> sign
gpg> save

Subkeys Define as many of them as needed (based on gpg --expert --edit-key
NEWKEYID), possibly one for signing, one for encrypting and one for authenti-
cating (apparently not automatically generated), each time with addkey; select
a strong yet commonly-accepted algorithm (e.g. RSA 4096 bits), and a shorter
lifespan (e.g. 2 years).

A simpler "triple" use (S/E/A) single key may be preferred, or additionally
created.

Prepare Revocation Create a revocation certificate for your master key,
specifying reason 1 (Key has been compromised) and clarify with a comment
(This revocation certificate has been generated at key creation.):

$ gpg --output $(date ’+%Y%m%d’)-masterkey.gpg-revocation-certificate.key --gen-revoke KEYID

Stores possibly multiple offline copies of that certificate.

Finally Backup secret keys:

$ gpg -o $(date ’+%Y%m%d’)-full-key-backup-for-james.bond.gpg --export-secret-keys

Dispatch the various public keys generated (for signing, encrypting, authen-
ticating):

$ gpg --send-keys KEYID

Transfer the james-bond.pub public key to webserver (e.g. https://mi6.org/),
based on gpg -o james-bond.pub --export PUBKEYID.

130

Hints

• whenever useful, add the --armor option to use ASCII output armor,
suitable for copying and pasting content in text format

• if you have multiple email accounts, thanks to --edit-key you can add
each one of them in the same key as an identity (name), using the adduid
command; you can then set your favourite one as primary

• to always show full fingerprints of keys, add with-fingerprint to your
configuration file (typically ~/.gnupg/dirmngr.conf)

• these Debian guidelines describe a robust, well-defined process for key
management that may apply to most developers

• for a proper OpenPGP support, we have had to change our e-mail client,
from Thunderbird (problems importing by itself strong/recent key types,
and non-terminating attempts of reading the local pgp key ring) to Evolu-
tion (worked directly as expected); yet Evolution came with other draw-
backs (regarding agenda/calendar features), so we came back to Thunder-
bird with rather reasonable settings

Obtaining my Current Public Key

As the time of this writing (Tuesday, January 3, 2023), my daily key for
signing / encrypting / authenticating is a RSA 4096-bit one designated as
3e090de4d08e42944d195a7bb8235ece469eb77f.

It can be obtained by different means:

• downloading https://esperide.com/olivier-boudeville.pub

• searching in SKS key servers, e.g. keyserver.ubuntu.com

• searching in the openpgp.org key server

See Also

• a complete, well-written tutorial, in French: Bien démarrer avec GnuPG

• still in French: other interesting usage hints and GnuPG : Créer la paire
de clé gpg parfaite

• GnuPG on Arch, for much additional information

• Network Management information

A Link With Decentralized Identifiers
The use of key pairs in the absence of a certificate authority directly relates to
Decentralized Identifiers (DIDs), a class of universal solutions (not depending on
any context/organisation, and able to be recognized by any) with which anyone
can create one’s (globally unique) identifiers that remain in one’s full control:
one freely issues them, they remain valid as long as their issuer wishes (as none

131

https://wiki.debian.org/Subkeys
https://esperide.com/olivier-boudeville.pub
http://keyserver.ubuntu.com/pks/lookup?search=olivier.boudeville%40esperide.com&fingerprint=on&op=index
https://keys.openpgp.org/search?q=olivier.boudeville%40esperide.com
https://linuxfr.org/news/bien-demarrer-avec-gnupg
https://blog.mailfence.com/fr/meilleures-pratiques-de-signature-numerique-openpgp/
https://wiki.csnu.org/index.php/GnuPG_:_Cr%C3%A9er_la_paire_de_cl%C3%A9_gpg_parfaite_:_cl%C3%A9_maitre,_subkeys_et_support_smartcard_(yubikey)
https://wiki.csnu.org/index.php/GnuPG_:_Cr%C3%A9er_la_paire_de_cl%C3%A9_gpg_parfaite_:_cl%C3%A9_maitre,_subkeys_et_support_smartcard_(yubikey)
https://wiki.archlinux.org/title/GnuPG
Networking.html
https://www.w3.org/TR/did-core/

but their creator itself can revoke them), and (for example unlike mere UUIDs)
they can be cryptographically verified by anyone.

No external central authority applies to such identifiers, which cannot reveal
personal information unless decided by their issuer and thus sole controller.

In practice, although other solutions could maybe be considered, it involves,
like discussed in the previous sections, generating on one’s own at least a pub-
lic/private key pair, to store safely the private one and to share as widely as
needed the public one. Then one can sign and/or encrypt one’s messages with a
pretty good hope that they will remain secure for a while; such a system enables
partial disclosure (as one chooses what one encrypts or signs) in full control (as
all operations are driven by the private key that the issuer is the only one to
control).

These decentralised identifiers, together with the principle of addressing a
digital content by its fingerprint (e.g. SHA1), offer a solution bringing many
interesting properties and opening new possibilities to distributed systems (e.g.
for blockchains, a user account is often identified by the fingerprint of its asso-
ciated public certificate).

132

About Build Tools
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Wednesday, March 19, 2025

Table of Contents
Purpose of Build Tools 123
Choice . 123
GNU make . 123
See Also . 124

Purpose of Build Tools
A build tool allows to automate all kinds of tasks, by applying rules and
tracking dependencies: not only compiling, linking, etc. applications, but
also checking them, generating their documentation, running and debugging
them, etc.

Choice
Often build tools are tied to some programming languages (e.g. Maven for Java,
Rebar3 for Erlang, etc.).

Some tools are more generic by nature, like late GNU autotools, or Cmake,
GNU make, etc.

For most uses, our personal preference goes to the latter. Notably all our
Erlang-based developments, starting from Ceylan-Myriad, are based on GNU
make.

GNU make
We recommend the reading of this essential source for reference purpose, notably
the section about The Two Flavors of Variables.

Taking our Erlang developments as an example, their base, first layer, Ceylan-
Myriad, relies on build facilities that are designed to be also reused and further
adapted / specialised / parametrised in turn by all layers above in the stack
(e.g. Ceylan-WOOPER).

For that, Myriad defines three top-level makefiles:

• base build-related variables (settings) in GNUmakevars.inc, providing de-
faults that can be overridden by upper layers

• automatic rules, in GNUmakerules-automatic.inc, able to operate generi-
cally on patterns, typically based on file extensions

• explicit rules, in GNUmakerules-explicit.inc, for all specific named make
targets (e.g. all, clean)

133

https://github.com/erlang/rebar3
https://cmake.org/
https://www.gnu.org/software/make/
http://myriad.esperide.org
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html#Flavors
http://myriad.esperide.org
http://myriad.esperide.org
http://wooper.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakerules-automatic.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakerules-explicit.inc

Each layer references its specialisation of these three elements (and the ones
of all layers below) in its own GNUmakesettings.inc file, which is the only ele-
ment that each per-directory GNUmakefile file will have to include.

Such a system allows defining (build-time and runtime) settings and rules
once for all, while remaining flexible and enabling individual makefiles to be
minimalistic: beside said include, they just have to list which of their subdi-
rectories the build should traverse (thanks to the MODULES_DIRS variable, see
example).

See Also
asdf, an extendable version manager for various languages (Ruby, Node.js,
Elixir, Erlang, etc.).

One may refer to the development section of Ceylan-Hull, or go back to the
Ceylan-HOWTOs main page.

134

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/GNUmakesettings.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/user-interface/GNUmakefile
https://github.com/asdf-vm/asdf
http://hull.esperide.org#for-development
Ceylan-HOWTOs-overview-english.html

Version Control Systems: in Practice, now, Git
Organisation: Copyright (C) 2021-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Tuesday, April 15, 2025

Table of Contents
Overview . 125
Git Usage . 125

Recommended General Conventions 125
Base Know-How . 126
Managing Branches . 128

Merge versus Rebase 128
Directly Transferring Changes 129
Merging with no Auto-Commit 129

Common Procedures . 130
Overcoming auto-signed SSL certificate issues 130
Setting the right metadata for the next commits . . 130
Performing operation on remotes with no systematic

authentication 130
Updating One’s Fork from its Upstream 131
Creating an empty branch 131
Listing differences with prior versions of a file 131
Performing a Merge with Emacs 131
Using the Stash . 132
Preventing the commit of a file in VCS that is often

locally modified 133
Listing the files managed in VCS from the current

directory 133
Reducing the size of a repository 133
Fixing LF vs CRLF End of Line Problems 134
Fixing a commit message 134
Removing a commit (rollback) 134
Restoring a branch to a past state 134
Listing local or list the remote branches by their last

modified date 134
Tools . 135

On Most Platforms . 135
On Windows . 135

Inner Workings . 135
Translations . 136
Documentation . 136

135

Overview
No real software development shall happen without the use of a VCS - standing
for Version Control System - of some sorts, notably in order to track the versions
of the source files involved and to ease the collaborative work on them.

Many solutions have been defined for this purpose (CVS, Clearcase, SVN,
Mercurial, etc.), but now a single tool is the de facto standard: Git, which is a
distributed version control system available as free software; refer to its website
for more details.

Git Usage
Beyond the documentation relative to its general use, projects have to adopt
their own set of conventions - regarding the management of branches, commits,
tags, etc - based on their preferences and context.

Recommended General Conventions

These are certainly very basic and possibly idiosyncratic, yet any VCS content
(typically a release branch) should, in our opinion, meet a few criteria in terms
of quality.

The ones to which we try to stick are:

• the path (including names) of files and directories should not contain di-
acritic, special character or spaces - only plain, basic, boring ASCII char-
acters; as separator, prefer dashes (-) to underscores (_)

• the character case shall be uniform (e.g. directory names starting always
or never with a capital letter)

• the language used shall be uniform (e.g. only proper English)

• a commit message shall describe synthetically the modifications operated
on the corresponding new filesystem snapshot; such a message, preferably
in English, should always start with a capital letter and end with a dot;
e.g. "Fixed the computation of angles." or "Upgraded the Frobnicator to
2.1."

• permissions, both for directories and files, shall be uniform and properly
set (e.g. no plain file shall be executable)

• the file formats shall be, as much as possible, homogeneous, notably for
text files with regard to the line terminators; either only UNIX conventions
(only LF; preferred), or only Windows ones (CRLF); use dos2unix whenever
necessary, possibly automated through a Git hook

• abbreviations are convenient (e.g. br for branch, co for checkout, etc.);
they can be defined in one’s ~/.gitconfig

• a repository should:

– only include relevant, well-selected binary files (if any)
– neither include generated files (at least no trivially-generated one),

such as *.o, *.so, *.class nor useless/temporary ones (such as
.~lock.foo.bar# or commit-30860f7, buz.log)

136

https://en.wikipedia.org/wiki/Git)
https://git-scm.com/
https://sphinx-rtd-theme.readthedocs.io/en/latest/

Base Know-How

• specifying a target revision:

– a revision is generally the name of a commit object; it can be its
SHA-1, or a symbolic name like HEAD or master@{yesterday}

– the path that it designates may be either "absolute" (i.e. relative to
the root of the clone, like PREFIX:a/b/c/my-file.txt) or relative
to the current directory in the clone (provided they start with ./,
like PREFIX:./c/my-file.txt if being in the previous b directory)

– suffixes may be added:
∗ ~[n] (e.g. v1.5.1~3) allows to designate the generation ancestor

(parent, grand-parent, etc.) of a revision; for example: git show
HEAD~:a/b/c/my-file.txt shows the first parent of the current
commit of that file

∗ ^[n] (e.g. HEAD^ or HEAD^2) allows to designate the n-th parent
(at the same level, should a commit have multiple parents, like
after a merge) of the current commit of that file

• managing branches:

– creating branches is done thanks to the checkout command, often
abbreviated as co here

– to create a branch deriving from the current one (the current HEAD)
and switching to it at the same time (performing its co, while inher-
iting any local changes): git co -b my_new_branch

– to create a local branch corresponding to a remote one (let’s sup-
pose it is named some_branch), assuming that a remote server (e.g.
my_remote, possibly origin) has already been declared (e.g. git
remote add my_remote URL):

∗ first step is to update the remote-tracking branches with git
fetch my_remote, then to create the target local branch track-
ing that remote (upstream) one with: git co -b some_branch
my_remote/some_branch (also switching to it here)

∗ a shortcut is to use git co --track my_remote/some_branch
instead

∗ even shorter, if the name of the target local branch name does
not exist yet and matches exactly matches a name on only one
remote, git co some_branch will suffice

– to delete a local branch (while another one is checked out): git
branch -d my_branch; to force-delete it (typically if not fully merged),
use git branch -d my_branch; to delete it from a specified remote
as well: git push origin --delete my_branch

– to change to a branch: git switch target_branch (to be preferred
to the use of git checkout)

– to update (synchronise from a remote) branch(es): for a designated
branch, use git fetch remote branch_name (typically git fetch
origin branch_name); for all branches of a remote: git fetch remote;
for all branches of all remotes: git fetch --all

137

https://git-scm.com/docs/gitrevisions
https://git-scm.com/book/en/v2/Git-Branching-Remote-Branches

• managing tags (note that they are repository-level, for example not
related to any current branch):

– to list all (local) tags: git tag

– to list all (annotated) tags, from the oldest one to the latest one: use
Ceylan-Hull’s list-tags-by-date.sh script

– to have information about an already-existing tag: git show my_tag

– to set a new annotated tag: git tag -a foobar-version-2.4.0
-m "Release of the version 2.4.0 of Foobar."; prefer naming
tags differently from branches (e.g. foobar-version-2.4.0 rather
than foobar-2.4.0) to spare ambiguities to Git

– a set tag must be specifically pushed on a remote, for example: git
push origin my_tag; all tags can be pushed with git push --tags
(the remote can be implied)

– to delete a tag that was not pushed: git tag --delete my_tag

• determining whether a file is in VCS, knowing that due to .gitignore
rules, update-index --skip-worktree, etc. it is not always obvious:

Target file is tracked iff is listed by:
$ git ls-files | grep my_file

Or, in order to trigger an error if this target file is not tracked:
git ls-files --error-unmatch my_file

• getting the version of a file as it was at a given revision:

Replaces the current version of that file by the designated one:
$ git checkout COMMIT_ID path/to/the/target/file

So, for example, in order to revert/replace the current version of a file by
the one at which is was *prior* to a given commit:
#
$ git checkout COMMIT_ID~ path/to/the/target/file

Outputs on the console the designated version:
$ git show COMMIT_ID:path/to/the/target/file

Outputs on the console the diff between the designated
version and the current one:
#
$ git diff COMMIT_ID:path/to/the/target/file

• listing the files modified by a given commit: git show --name-only
MY_COMMIT_ID will print relevant extra information; if wanting only the
list of modified files: git diff-tree --no-commit-id --name-only -r
--pretty COMMIT_ID

138

• merging a remote branch, without having it / updating it locally :
for example, to merge the remote main branch in the current my_branch
branch, without updating the local counterpart of main (i.e. without hav-
ing to run for example git checkout main && git pull && git my_branch
first), just execute: git merge origin/main

Managing Branches

Creating branches allows to separate threads of work (while preserving their
lineage) and progress concurrently. Yet often their content will have to converge
ultimately; depending on the intent, two use cases can be considered, resulting
in different Git uses.

Merge versus Rebase Here one may want:

• either to integrate back a development branch (e.g. my-feature) in
a shared, parent one (e.g. master): then one shall prefer using merge,
in order to keep separate histories and not affect the past one of the shared
branch

• or to resynchronise a development branch (e.g. my-feature) on the
last version of a shared branch and continue these developments:
then one shall prefer rebase, so that the history of the development branch
contains only its own changes (less noise, linear history)

In practice, in order to transfer the changes of a branch A in a branch B:

$ git co B

Either first case (integrate development A in master B):
$ git merge A # or: git pull A

Or second one (resynchronise development B on master A):
$ git rebase A # or: git pull -rebase A

How such a last rebase of branch A in branch B is done? The bifurcation
point of B compared to A is moved from its initial position to the current head
of A, on which all changes recorded in B are applied; the resulting history of B
looks like if these changes had been directly performed from the version of A
designated in this rebase, and thus B can be then directly fast-forwarded to its
tip, which comprises both the changes synchronised from A and, then, the ones
specifically introduced in B.

Then, to update the remote with these post-rebase commits, git push
--force-with-lease shall be used39.

More information: [1] or, in French: [2], [3], [4].

39Rather than just performing just a push, having it fail, pulling, and ending up with
duplicates of the changes. Should this happen, rewind these changes, for example with: git
reset --hard <full_hash_of_commit_to_reset_to>.

139

https://www.atlassian.com/en/git/tutorials/merging-vs-rebasing
http://codeur-pro.fr/difference-entre-git-merge-et-git-rebase/
https://meritis.fr/git-rebase-vs-git-merge-quelles-differences/
http://blog.fclement.info/git-merge-et-git-rebase-les-eternels-incompris

Directly Transferring Changes Sometimes, one may want to directly trans-
fer the changes of a derivate branch B in a parent branch A. When one knows
for sure that the versions in B shall be preferred in all cases to their counterparts
in A (note that a classical merge is already fully able to manage fast-forwards),
one may use:

$ git checkout A
$ git merge -X theirs B

No conflict should arise (source); note that this does not imply that the
contents of the two branches match.

The same is possible with rebase; for example: git rebase -X theirs B.
Note that -X a strategy option, whereas -s would be a merge strategy option.
Using here ours rather than theirs :

• -X ours uses "our" version of a change only when there is a conflict

• whereas -s ours ignores the content of the other branch entirely (in all
cases), and use "our" version instead; -s theirs does not exist

Another (brutal but sure) way of forcing the content of a branch B to be
the same as the one of a branch A is, while B is checked-out, to execute: git
reset --hard A. As mentioned previously, push shall be done then with git
push --force-with-lease.

Sometimes, we know for sure that a given file must be transferred as it is on a
given branch (some_branch), as a whole, to the current branch (current_branch).
Cherry-picking is not exactly what is needed, as git cherry deals with commits,
not actual contents. Here, what we presented with checkout may be more ap-
propriate:

$ git checkout current_branch
The current location on the branch matters:
$ git checkout some_branch -- path/to/the/target/file
Updated 1 path from 6f154364

Merging with no Auto-Commit Often a bit anxious to acknowledge an
automatic merge with so little control on the corresponding changes?

One approach is, when being in a branch A, to execute git merge --no-commit
--no-ff B: the merge of B in A will be done, but not committed, leaving the
possibility to review - and possibly correct - it.

The staged changes can indeed then be inspected with git diff --cached
(or our difs script) and, if finding a file whose merge is not satisfactory, just
correct it (possibly git restore its version from A), and possibly further fix
the merge, before committing it.

If there was at least one conflict, run git merge --abort to get rid of the
’MERGING’ state.

Common Procedures

Overcoming auto-signed SSL certificate issues To avoid, typically in a
company internal setting, errors like:

140

https://stackoverflow.com/questions/173919/is-there-a-theirs-version-of-git-merge-s-ours
https://git-scm.com/docs/git-cherry

Cloning into ’XXX’...
fatal: unable to access ’https://foo.bar.org/XX/XXX/’: SSL certificate problem: self signed certificate in certificate chain

the http.sslVerify=false option may be used, even if it weakens the over-
all security.

This is typically useful initially:

$ git -c http.sslVerify=false clone https://foo.bar.org/XX/XXX

In order that the next operations (e.g. future pushes) overcome too this
problem for the current repository, use from within the current clone:

$ git config http.sslVerify false

Setting the right metadata for the next commits Doing so prevent from
having to amend commits a posteriori.

If these information apply for all projects:

$ git config --global user.name "John Doe"
$ git config --global user.email john.doe@foobar.org

Otherwise shall be done at least on a per-project basis with:

$ git config user.name "John Doe"
$ git config user.email john.doe@foobar.org

Also git config --global --edit may be of use (beware to trigger a vi
by accident...).

Performing operation on remotes with no systematic authentication
Using a SSH key pair, hence with its public key declared on said remote, is
a relevant approach, safer and more convenient than from example using a
~/.netrc file, with or without a Personal Access Token (PAT) - as they tend
to expire.

Refer to this section in order to set up a proper SSH configuration for that.

Updating One’s Fork from its Upstream So you forked a repository (let’s
say it is in https://github.com/some_project/some_repo.git) and made
progress - yet in the meantime the upstream repository may also have been
updated, and you want to integrate these changes in yours.

First step is to ensure that this repository (designated here as upstream for
convenience) is locally known:

$ git remote add upstream https://github.com/some_project/some_repo.git

Then, from a fully-committed clone of your fork (let’s suppose we are using
the main branch in all repositories):

141

Cybersecurity.html#authentication-using-ssh

$ git fetch upstream

More appropriate than a merge:
$ git rebase upstream/main

Repeatedly, as long as conflicts are found:
$ git rebase --continue

Forced, as otherwise the current branch will deemed to be behind our remote:
(hopefully your branch at origin is not protected by a hook; otherwise:
’git checkout -b some_branch’, etc.)

$ git push -f origin main

Creating an empty branch Rather than creating it from a pre-existing
branch and removing all inherited content, prefer:

$ git checkout --orphan my_new_branch

(typically useful for GitHub Pages branches; may then be followed by some
adds and git commit --allow-empty -m "Initial website.")

Listing differences with prior versions of a file In order to list the differ-
ences of a given file with the previous commits (precisely: of a set of pathspecs),
one may use our dif-prev.sh script, which by default reports the differences
with the last committed version. With the --all option, it lists all differences,
until the first addition of this file.

Performing a Merge with Emacs Our procedure is to rely on our con-
figuration of Emacs, which configures the smerge-mode (which is automatically
triggered in the case of files containing conflicts; see the SMerge menu) so that it
relies on the C-c v40 smerge command prefix (that we found more convenient).

Then the following main commands are useful:

• to move between conflicts:

– go to next one: smerge-command-prefix n (for smerge-next), which
thus corresponds to C-c v n

– go to previous one: smerge-command-prefix p (for smerge-previous),
which thus corresponds to C-c v p

• to select a version:

– the one the cursor is currently on: smerge-command-prefix RET (for
smerge-keep-current), which thus corresponds to C-c v RET

– that was in our current merge-target branch: smerge-command-prefix
m (for smerge-keep-mine), which thus corresponds to C-c v m

40Hence: press and hold the "Ctrl" key, hit the "c" key, then release all, then press the "v"
key, and release. This is obtained thanks to (setq smerge-command-prefix "\C-cv").

142

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init.el

– that is in the other branch, to merge in our current one: smerge-command-prefix
o (for smerge-keep-other), which thus corresponds to C-c v o

Sometimes we would like to accept or refuse all changes of a file as a whole;
apparently there is no way of doing so easily with smerge-mode, so to select a
full file version we recommend executing, respectively, git checkout --theirs
-- MY_FILE or git checkout --ours -- MY_FILE.

See also our more general Emacs section.

Using the Stash The stash allows to record the current state of the working
directory and the index while going back to a clean working directory: the
command saves the local modifications away, and reverts the working directory
to match the HEAD commit.

The stash is convenient in order to switch branches without having to per-
form an arbitrary (meaningless) commit just for the sake of switching.

A basic use of the stash is the following:

• to store the currently modified files in the stash: git stash (equivalent
of git stash push)

• to restore the (by default lastly) stored state (hence the reciprocal of the
previous command), i.e. to apply it to the current files (with no review
and no changes to add afterwards) and then drop that stashed entry: git
stash pop [STASH_INDEX]

• to list the various sets of modifications stashed away: git stash list

• to show the changes recorded in the stash entry as a diff between the
stashed contents and the commit back when the stash entry was first
created:

– with just one synthetic line per file changed: git stash show [STASH_INDEX]

– with all actual changes: git stash show -p [STASH_INDEX]

• to drop a stash entry: git stash drop [STASH_INDEX]

Refer to the git stash documentation for more information.

Preventing the commit of a file in VCS that is often locally modified
One should use this method:

$ git update-index --skip-worktree <file-list>

The opposite operation is:

$ git update-index --no-skip-worktree <file-list>

To list such "skipped" files:

$ git ls-files -v . | grep ^S

143

Emacs.html
https://git-scm.com/docs/git-stash/
https://stackoverflow.com/questions/1753070/how-do-i-configure-git-to-ignore-some-files-locally

Listing the files managed in VCS from the current directory Use git
ls-files to determine the files that are already managed in VCS, recursively
from the current directory.

To list the untracked files (i.e. the files not in VCS), use git ls-files
--others.

Reducing the size of a repository One may use our list-largest-vcs-blobs.sh
script to detect any larger files that should not be in VCS (e.g. should a colleague
have committed by mistake a third-party archive, or unexpected data such as
CSV files).

Then install BFG Repo-Cleaner:

$ mkdir -p ~/Software/bfg-repo-cleaner/
$ cd $_
$ mv ~/bfg-1.14.0.jar .
$ ln -s bfg-1.14.0.jar bfg.jar
For example in ~/.bashrc:
$ alias bfg="java -jar ~/Software/bfg-repo-cleaner/bfg.jar"

All developers should be asked to commit their sources (git add + push), to
archive their clone (e.g. in a timestamped .xz file like 20220412-archive-clone-foobar.tar.xz),
and to wait until notified that they can create a new clone.

The repository may be then cleaned up (e.g. from large, unnecessary CSV
files) in isolation, with:

$ git clone --mirror XXX/foobar.git
$ bfg --delete-files ’*.csv’ foobar.git
$ cd foobar
$ git reflog expire --expire=now --all && git gc --prune=now --aggressive
$ git push

Then all developers shall be requested to perform a new clone and to check
the fetched content (e.g. with regard to the content of the last branch in which
they committed).

Fixing LF vs CRLF End of Line Problems Use Git Attributes to specify
proper files and paths attributes.

One may define a .gitattributes file for example with *.js eol=lf, *
text=auto, or:

No CRLF conversion for DOS/Windows batch files.
They should be stored with the CRLF line terminators.
#
*.bat -crlf

Fixing a commit message If no push was done, it is as simple as replacing
the former message by a new one, like in:

$ git commit --amend -m "This is a fixed commit message."

144

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/list-largest-vcs-blobs.sh
https://rtyley.github.io/bfg-repo-cleaner/
https://git-scm.com/book/en/v2/Customizing-Git-Git-Attributes

Removing a commit (rollback) The goal here is to withdraw (revert) a
(presumably faulty) commit.

If it has not been pushed to remote, use git reset HEAD~1 (then the commit
is removed, but the working tree still has the changes that were in that commit).

Otherwise, if the commit has already been pushed, use git revert HEAD
(then a push can be made to "cancel" the previous commit).

Restoring a branch to a past state Sometimes mistakes are made, com-
mitted and pushed - typically when messing up some merge.

Various operations can be of use to correct them:

• to consult a past state (e.g. based on a SHA1) and possibly create a
dedicated branch out of it: use checkout

• to selectively remove the changes introduced by specific commits, by adding
reverting commits (hence not losing history); use revert; such an opera-
tion must be validated thanks to a well-documented commit

• to come back to a past overall state (e.g. a SHA1), losing all changes done
since then (hard delete, rewriting history): use reset, with the --soft
option to keep intermediary changes as non-committed, or with the --hard
option to remove all changes; no commit is involved here (newer commits
being just forgotten); if satisfied with this new state, it may be validated
thanks to git push --force origin HEAD - provided that the current
branch is not protected

See also these exchanges.

Listing local or list the remote branches by their last modified date
For local ones:

$ git for-each-ref --sort=’-committerdate:iso8601’ --format=’ %(committerdate:iso8601)%09%(refname)’ refs/heads

2024-05-24 18:02:52 +0200 refs/heads/17-xxx
2024-05-24 18:02:52 +0200 refs/heads/main
2024-05-24 14:51:15 +0200 refs/heads/36-yyy
2024-05-24 12:19:51 +0200 refs/heads/zzz
2024-04-19 18:03:37 +0200 refs/heads/aaa

For remote ones:

$ git for-each-ref --sort=’-committerdate:iso8601’ --format=’ %(committerdate:iso8601)%09%(refname)’ refs/remotes

See also:

• our list-lastly-updated-vcs-branches.sh script

• these exchanges.

145

https://stackoverflow.com/questions/4114095/how-do-i-revert-a-git-repository-to-a-previous-commit
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/list-lastly-updated-vcs-branches.sh
https://stackoverflow.com/questions/2514172/listing-each-branch-and-its-last-revisions-date-in-git

Tools
On Most Platforms

At least on UNIX, the command-line Git client (git) is certainly the best tool.
In difficult situations, graphical tools such as gitk may be of help.

Some distributions (e.g. Debian) do not come with a relevant Git autocom-
pletion (for commands, branches, etc.) regarding one’s shell of interest (like
Bash). A solution is to download git-completion.bash, store it for example in
~/Software/Git/, and source it automatically from one’s ~/.bashrc.

See also our Ceylan-Hull section about VCS-related scripts.

On Windows

Tools like TortoiseGit may foster a view on the usage of Git that is a bit par-
ticular, conflating concepts or introducing extra ones (e.g. a sync command).
Apparently also at least some pulls did not reintroduce files just removed from
the working directory.

More generally, cloning on a Windows host an UNIX-originating repository
comprising symbolic links may induce oddities (e.g. a symlink named S pointing
to Foobar resulting, on a Windows clone, in a file named S whose content is,
literally, the text "Foobar", instead of the expected content of the Foobar file).

Another option is to use Visual Studio Code (vscode), which supports na-
tively Git (provided that the command-line version is already installed). One
may select View -> SCM (or Ctrl-Shift-G) for that. Clicking on the "VCS"
icon (three rings links by two curves; the third from the top) displays a contex-
tual view offering various associated operations (here based on Git).

We finally preferred using MSYS2 + Git rather than Git Bash, named "Git
for Windows"; hints to speed up these tools may apply.

Inner Workings
Git stores internally every version of every file separately (not as a diff with a
parent version) as a blob (an opaque binary content) identified by its (SHA1)
hash.

A commit is the identifier of a tree representing the filesystem of interest at
a given moment (snapshot). This tree references the files through their SHA1,
similarly to a Merkle tree.

A branch is thus nothing but a pointer on a given commit, and HEAD desig-
nates the current branch. Git stores natively only blobs, trees and commits.

The reported differences in the content of a file or a tree are thus only
recreated (established dynamically) by Git commands, they are not natively
tracked.

Translations
From English to French:

• repository -> dépôt

• to checkout -> extraire

146

https://git-scm.com/book/en/v2/Appendix-A:-Git-in-Other-Environments-Git-in-Bash
https://raw.githubusercontent.com/git/git/master/contrib/completion/git-completion.bash
https://hull.esperide.org/#for-version-control-system-vcs
https://tortoisegit.org/
https://gitforwindows.org/
http://source.technology/speed-up-git-bash-on-windows
https://en.wikipedia.org/wiki/Merkle_tree

• to commit -> valider

• a commit -> une validation

• a tag -> une étiquette

• in VCS -> en GCL (Gestion de Configuration Logicielle)

• snapshot -> instantané (de l’état du sous-système de fichiers géré en
GCL)

• merge -> fusion

• head -> tête

• fast-forward -> avancement direct

• fast-forwarded -> directement avancée

Documentation
Many pointers exist, doing a great job in unveiling how Git is to be used.

In English, Pro GIT is surely a reference.
In French:

• introduction en français

• cours sur OpenClassrooms

• référence incontournable et conseillée : Pro GIT, notamment pour l’explication
de ses rudiments puis de son fonctionnement interne, à commencer par ses
objets

147

https://git-scm.com/book/en/v2
https://perso.liris.cnrs.fr/pierre-antoine.champin/enseignement/intro-git/)del'IUTLyon-1
https://openclassrooms.com/fr/courses/1233741-gerez-vos-codes-source-avec-git
https://git-scm.com/book/fr/v2
https://git-scm.com/book/fr/v2/D%C3%A9marrage-rapide-Rudiments-de-Git
https://git-scm.com/book/fr/v2/Les-tripes-de-Git-Plomberie-et-porcelaine
https://git-scm.com/book/fr/v2/Les-tripes-de-Git-Les-objets-de-Git
https://git-scm.com/book/fr/v2/Les-tripes-de-Git-Les-objets-de-Git

Documentation Generation
Organisation: Copyright (C) 2022-2025 Olivier Boudeville
Contact: about (dash) howtos (at) esperide (dot) com
Creation date: Wednesday, January 12, 2022
Lastly updated: Wednesday, March 19, 2025

Table of Contents
Objective . 137
Our Preferred Lightweight Approach 137

Principle . 137
Specific Topics . 138

Rendering Mathematical Elements 138
Title Hierarchy . 140
Image Sizes . 140
Multi-File Documents 141
Inner Links . 141
Citations & References 141
Commenting . 142
Defining Blocks . 142
Fixing WARNING: Duplicate explicit target name:

"some link" 143
Our Preferred More Heavy-Duty Approach 143

Principle . 143
Installation . 143
Configuration . 143
Theme Selection . 144
Adding Content . 145
Inner Links with Sphinx . 145
The Problem of Nested Includes 146

Miscellaneous . 146
Validating / Checking HTML Content 146
Fixing Permissions in Third-Party Content to Integrate in

a Web Root . 146
Pointing to a Specific Moment in a Linked Video 147
Conversion between Markup Formats 147
Transformation of PDF files 148
Image Transformations . 149

Inverting an Image 149
Rendering a Vector Image at a given Scale/Size . . . 149
Adding a Border to an Image 149
Compositing/Blitting an Image onto Another 150

Plot Generation . 150
UML Diagrams . 150

Quick UML Cheat Sheet 150
Tooling . 152

Finding Usable Content . 153
Using Additional Fonts . 153

148

Objective
The goal is to generate nice documentations of any kind (not necessarily tech-
nical), as static content - as opposed to wikis or content management systems
(CMS).

We want to be able to generate, from a single source, at least two doc-
umentation formats:

• a set of interlinked static web pages (the most popular, flexible format)

• a single, standalone PDF file (convenient for offline reading, printing,
etc.)

The document source shall be expressed in a simple, non-limiting, high-level
syntax; in practice a rather standard, lightweight markup language.

All standard documentation elements shall be available (e.g. title, tables,
images, links, references, tables of content, etc.) and be customisable.

The resulting documents shall be quickly and easily generated, with proper
error report, and be beautiful and user-friendly (e.g. with well-configured La-
TeX, with appropriate CSS, icons and features like banners, with proper ren-
dering of equations).

Per-format overriding shall be possible (e.g. to define different image sizes
depending on web output or PDF one).

The whole documentation process shall be powered only by free software
solutions, easily automated (e.g. with Make) and suitable for version control
(e.g. with Git).

For that we rely on two possible approaches, a lighter one and a more in-
volved one, depending on the project at hand.

Our Preferred Lightweight Approach
Principle

We found this approach convenient for lighter projects, i.e. ones comprising a
limited number of pages. This is the case of this page and more generally of the
whole Ceylan-HOWTO website.

We chose to rely on the reStructuredText syntax and tools, also known as
RST, a part of the Docutils project. Here we do not specifically rely on elements
related to Python or the Sphinx toolchain, as our more heavy-duty approach
does.

We augmented reStructuredText with:

• a set of make-based defines and rules (automatic or explicit) that were
aggregated in Ceylan-Myriad (see notably GNUmakerules-docutils.inc and
the generate-docutils.sh generation script); this mechanism is layer-friendly,
in the sense that all layers defined (directly or not) on top of Myriad are
able by default to re-use these elements and to customise them if needed

• a template on which we rely for most documents, featuring notably a
standard table (to specify usual metadata such as organisation, contact
information, abstract, versions, etc.), a table of contents, conventions in
terms of title hierarchy and, for the HTML output, a banner (a fixed,
non-scrolling panel offering shortcuts, in the top-right corner of the page)

149

https://en.wikipedia.org/wiki/Content_management_system
Build.html
Git.html
https://en.wikipedia.org/wiki/ReStructuredText
https://docutils.sourceforge.io/
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/GNUmakerules-docutils.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/scripts/generate-docutils.sh

• a simple tag-based system to have the actual document markup (*.rst)
directly generated from a higher-level source one (*.rst.template); in
practice, if defined, only the latter element is edited by the user, and tags
(such as *_VERSION_TAG, *_DATE_TAG, etc.) are automatically filled-in
appropriately

Of course this website, and many others that we created, rely on this ap-
proach; as an example, one may look at the sources of the current document.

Specific Topics

Rendering Mathematical Elements With the RST toolchain, the PDF
output, thanks to LaTeX, offers built-in high-quality rendering of mathematical
elements such as equations, matrices, etc.

By default, the HTML output does not benefit from LaTeX, and remains
significantly less pleasing to the eye, and less readable.

So we complement it by MathJax, a neat open-source "JavaScript display
engine for mathematics that works in all browsers".

It shall thus be installed once for all first.

Basic, Less-than-Satisfactory, Installation Approach For example,
on Arch Linux, as root, it is sufficient to execute:

$ pacman -Sy mathjax

If not having root permissions, it can be installed directly in one’s user
account, for example:

$ cd /tmp && git clone https://github.com/mathjax/MathJax.git
$ mv MathJax/es5 ~/Software/MathJax

Then, to enable the use of MathJax for a given website based on Ceylan-
Myriad, run from its root (often a doc directory):

$ make create-mathjax-symlink

(this target is defined in GNUmakerules-docutils.inc; it boils down to sym-
linking /usr/share/mathjax; see also the HOWTOs corresponding makefile
to properly manage this dependency afterwards, notably when deploying web
content)

Yet, depending on settings and conventions, updating MathJax in a web root
may lead to permission errors; in that case the next approach shall be favored.

Better, Webroot-compliant Installation Approach Just install Math-
Jax directly in your user account (e.g. in ~/Software/mathjax), follow the
guidelines in the Fixing Permissions in Third-Party Content to Integrate in a
Web Root section, and add symlinks to the result in all documentation trees
requiring MathJax.

For that, rather than installing MathJax by oneself (as we found its web-
site rather unclear about how to install it when not in a Node.JS context) or

150

https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/blob/master/doc/DocGeneration.rst.template
https://www.mathjax.org/
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/GNUmakerules-docutils.inc
https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/blob/master/doc/GNUmakefile

possibly taking inspiration from this PKGBUILD, the simplest way is to install
it from one’s package manager (e.g. pacman -Sy mathjax) and to copy the re-
sult in one’s account: cp -r /usr/share/mathjax ~/Software/, before fixing
permissions there. This local copy shall just be regularly updated.

If Needing to Generate Images from Formulas This is typically gen-
erating an image file file from a LaTeX formula to include in a presentation, an
e-mail, any kind of post, etc.
LaTeX to SVG

tex2svg is the tool of choice here.
On Arch Linux, the texlive-bin (for pdflatex) and pdf2svg packages may

have to be installed.
LaTeX to PNG

We do not think this is the best approach as the resulting bitmap file is likely
to have issues in terms of rendering/aliasing.

This can be done thanks to tex2png, a simple yet effective Bash script.
At least the texlive-fontsrecommended Arch package shall be installed

beforehand, so that the lmodern.sty file is available.
Example of use: ./tex2png -c "$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2}$"

-T -D 500 -o my-example.png.
Usage

The list of TeX/LaTeX commands supported by MathJax may be of use.
Each LaTeX command may either be specified directly inline, in the text

(with :math:‘LATEX_CMD‘) or in a block indented after a .. math:: directive.

This allows to define inline mathematical elements, like 𝑃 =

(︂
10
45

)︂
(obtained

with P = \\begin{pmatrix} 10 \\\\ 45\\end{pmatrix}) or standalone ones,
like:

𝑀 =

⎡⎢⎢⎣
𝑎11 𝑎12 ... 𝑎1𝑛
𝑎21 𝑎22 ... 𝑎2𝑛
...

𝑎𝑚1 𝑎𝑚2 ... 𝑎𝑚𝑛

⎤⎥⎥⎦
obtained thanks to:

M = \begin{bmatrix}
a11 & a12 & ... & a1n \\
a21 & a22 & ... & a2n \\
... & ... & ... & ... \\
am1 & am2 & ... & amn \\

\end{bmatrix}

For 𝜑 : 𝑅 →]0, 1[(i.e. \phi: \mathbb{R} \rightarrow]0,1[), we may
have 𝑃𝑒 = 𝜑(𝑚+ 𝜑−1(𝑃𝑛)) is P_e = \phi(m+\phi^{-1}(P_n)).

If 𝜑(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥) (translating to \phi(x) = e^{x}/(1+e^{x})), then:

𝑃𝑒 =
𝑃𝑛.𝑒

𝑚

1 + 𝑃𝑛.(𝑒𝑚 − 1)

(translating to P_e = \frac{P_n.e^{m}}{1 + P_n.(e^{m}-1)})

151

https://github.com/archlinux/svntogit-community/blob/packages/mathjax/trunk/PKGBUILD
https://github.com/yannikschaelte/tex2svg
https://xyne.dev/projects/tex2png/
http://docs.mathjax.org/en/latest/input/tex/macros/index.html

A few other examples of resulting math-related outputs can be seen in this
section.

See the next section for a proper use of MathJax in webservers.
Other LaTeX elements that may be convenient:

• multiplying: use A \times B for 𝐴×𝐵, and A \cdot B for 𝐴 ·𝐵

• Greek letters: use \alpha for 𝛼 (lowercase), and \Gamma for Γ (uppercase)

• figures, like with:

.. figure:: static/xx.png
:align: center

Some relevant caption.

Title Hierarchy It must be consistent: a given type of subtitle must always
be placed at the same level in the title hierarchy.

We rely on the markup conventions exposed in this demonstration file (cre-
ated by David Goodger), whose source is here.

From the top-level title to the most nested ones:

• =, on top and below the title (document title)

• -, on top and below the title (document subtitle)

• =, below the title (H1)

• -, below the title (H2)

• . , below the title (H3)

• _, below the title (H4)

• *, below the title (H5)

• :, below the title (H6)

• +, below the title (H7)

Image Sizes Responsive images, i.e. images that automatically adjust to fit
the size of the screen, can be used. They are then defined for example thanks
to:

Various standard sizes have been defined, all prefixed with responsive-image-;
from the biggest (95%) to the smallest (10%), as defined for example in myr-
iad.css, they are: full, large, intermediate, medium, reduced, small, tiny,
xsmall.

Multi-File Documents

152

https://myriad.esperide.org/#linear-conventions
https://myriad.esperide.org/#linear-conventions
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/demo-for-css-testing.rst
https://raw.githubusercontent.com/Olivier-Boudeville/Ceylan-Myriad/master/doc/demo-for-css-testing.rst
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/myriad.css
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/myriad.css

Targeting a Standalone Document Although they tend to be less con-
venient to edit, longer documents may be split in a set of RST source files
(the Myriad documentation is an example of it; the WOOPER documentation
is an example of the opposite approach, based on a single source file).

Targeting Interlinked Modular Documents In some cases, at least
for the HTML output, the need is not to produce a single, large, monolithic
document, but a set of interlinked ones (the present HOWTO is an example
thereof) that can be browsed as separate pages.

Then a convenient approach is to define different entry points for different
output formats, like, for these HOWTOs, this one for the HTML output and
this one for the PDF output.

Inner Links Defining any title (e.g. the "Rendering Mathematical Elements"
one above) automatically introduces in turn a corresponding anchor, which, for
the HTML output, can then be referenced from any page, for example as raw
HTML (like MyPage.html#rendering-mathematical-elements, or directly from
the current page as #rendering-mathematical-elements) or directly through
RST in the document (e.g. specified as ‘Rendering Mathematical Elements‘_,
resulting in: Rendering Mathematical Elements).

Note the light transformation (spaces becoming dashes) of the specified name
once a it is translated into a legit HTML anchor.

Extra local anchors (e.g. that could be named "how to render equations")
can also be specified anywhere in the document (e.g. just before the previously
mentioned title, so that it can be designated with other words), thanks to:

.. _‘how to render equations‘:

It can then be referenced from the same page as #how-to-render-equations
or from another one as MyPage.html#how-to-render-equations.

Note that titles and hypertext links introduce local links as well, so one’s
inner links may clash with them (resulting in (ERROR/3) Duplicate target
name [...]); the best option is generally to phrase these inner links differently.

Citations & References

Choice of Conventions Engineering generally relies often on the IEEE
or the APA citation style.

We dislike a bit IEEE, as its references are just numbers (e.g. [1] in
Lindberg and Lee [1]), instead of more informative elements (like [CIT2002]),
so we chose APA, which seems more in-line with RST conventions.

Within APA, we prefer parenthetical citations (e.g. (Salas & D’Agostino,
2020)) to narrative ones (e.g. Salas and D’Agostino (2020)).

Here are extra examples thereof:

• the in-text reference pointers shall be, for books, like (Author, Year);
for example (Taylor, 2005)

• each of these pointers designates an actual reference in the form:

153

https://github.com/Olivier-Boudeville/Ceylan-Myriad/tree/master/doc
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/doc
http://howtos.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/blob/master/doc/Ceylan-HOWTOs-overview-english.rst.template
https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/blob/master/doc/Ceylan-HOWTOs-english.rst.template
DocGeneration.html#rendering-mathematical-elements
#rendering-mathematical-elements
#how-to-render-equations
DocGeneration.html#how-to-render-equations
https://www.scribbr.com/category/ieee/
https://apastyle.apa.org/style-grammar-guidelines/citations/basic-principles/author-date
https://libguides.wpi.edu/citingsources/apa_examples

Authors’ Last name, First Initial. (Year). Book title: Subtitle.
(Edition) [if other than the 1st]. Publisher

Unfortunately neither types of APA citations is supported (possibly because
of the parentheses and/or the space, the text is not interpreted as a citation.
So for example [(Taylor, 2005)]_ / .. [(Taylor, 2005)] will not work.

So we finally retained conventions that are a bit different: APA with no
parentheses or space.

Example Finally an actual example just follows: like explained in [Tay-
lor2005], the conservation of momentum can help solving elegantly some prob-
lems.

Commenting To comment-out a block of text, just add .. at the beginning
of a line, then, from the next line, put that block, indented of at least one space;
this must be a legit block (see Defining Blocks).

Defining Blocks All lines of a block shall start with the same whitespace.
So, whenever a given block is not left-justified (meaning that at least one of
its lines starts with a different offset), prefer having all lines of such a block be
indented of (at least) 4 spaces (i.e. a tabulation).

Otherwise, if using a single space to indent, as soon as a line of the block is
to start with 3 spaces, whitespace-cleanup operations will combine them with
the first one to form a tabulation (4 spaces in a row), and all lines of the
commented block will not start with the same whitespaces, which could result,
from the point of view of RST tools, in an invalid block.

To indent on Emacs, one may select the region of interest and then hit C-x
TAB TAB TAB [...] (or even just TAB once the block is selected).

Either a standard or a code indented block may be used.
A standard block is introduced by a non-indented text finishing with two

colons (::), like in: Here is what she said::.

Note
Unfortunately this does not allow proper French syntax, for which a
space is needed before the colons (e.g. typed as Elle a dit ensuite
::): adding such a space will result in no colon to be displayed.
So we stick to writing an improper Elle a dit ensuite::, which is
rendered as Elle a dit ensuite:, better than Elle a dit ensuite
but worse than Elle a dit ensuite :.

Before a code block (e.g. introduced with .. code:: erlang), a single
colon should be used, not two of them. For example:

This algorithm can be:

.. code:: erlang
[...]

[Taylor2005] Taylor, J, (2005), Classical Mechanics, (2005), University Science
Book, 98-100

154

Fixing WARNING: Duplicate explicit target name: "some link" This
typically happens whenever defining a link with a given label more than once.

A solution is to use anonymous reference instead, i.e. double underscores
(so: __) to define references, like in:

Here is ‘some link <http://example.org/xxx>‘__.

Using double underscores for links could be considered the norm.

Our Preferred More Heavy-Duty Approach
Principle

It applies to more ambitious projects, involving larger content with potentially
many interlinked pages.

It is based on the Sphinx toolchain, and therefore shares many elements with
our lightweight approach above, starting from the RST syntax.

It offers out of the box many useful mechanisms beyond the generation of a
single-page website, from a smooth navigation between a set of pages based on
foldable menus to a generated index and a local search engine. It moreover can
be easily customised.

More types of outputs are readily supported: HTML, PDF, EPUB, man
pages.

Installation

One may follow these guidelines. On Arch Linux, we install the python-sphinx
package, thanks to: pacman -Sy python-sphinx gnu-free-fonts texlive-binextra
(last package being needed now for latexmk, to generate PDFs).

Configuration

Running sphinx-quickstart is one’s best route; in terms of choices:

• we strongly recommend separating the source and build directories

• the "Project name" shall not include "documentation", as this word will
be added automatically wherever needed

Then make html should generate a base website (including makefiles) that
can be browsed in the build/html directory (use make clean to force its era-
sure; run just make to list all targets of interest, including the linkcheck one,
to check all external links for integrity).

The project settings can be edited in source/conf.py.

Theme Selection

The default (HTML) theme is the Alabaster one. Other themes may be pre-
ferred, whether they are Sphinx built-ins or external ones. Many can be cus-
tomised.

As for us, we prefer mobile-compliant themes with a left column to navigate.
This includes the popular Read the Docs theme, which will use here, but also
the classic theme.

155

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/installation.html
https://archlinux.org/packages/community/any/python-sphinx/
https://www.sphinx-doc.org/en/master/usage/theming.html
https://sphinx-themes.org/
https://sphinx-themes.org/sample-sites/sphinx-rtd-theme/
https://sphinx-themes.org/sample-sites/default-classic/

The documentation of the Read the Docs theme details everything needed.
For an installation thereof on Arch, the simplest is to run pacman -Sy python-sphinx_rtd_theme.

Then it is just a matter of editing source/conf.py so that ’sphinx_rtd_theme’
is listed in the extensions list, and that the html_theme is now set to ’sphinx_rtd_theme’.

Running make html again should be sufficient to take this new theme into
account. The generated result is quite satisfying.

Here is one customisation thereof (theme options) that we like:

#html_theme = ’alabaster’
html_theme = ’sphinx_rtd_theme’

html_theme_options = {
#’analytics_id’: ’G-XXXXXXXXXX’, # Provided by Google in your dashboard
#’analytics_anonymize_ip’: True,
’logo_only’: False,
’display_version’: True,
’prev_next_buttons_location’: ’both’,
’style_external_links’: True,
’vcs_pageview_mode’: ’’,
#’style_nav_header_background’: ’white’,
#’style_nav_header_background’: ’#2980B9’,
’style_nav_header_background’: ’black’,
Toc options
’collapse_navigation’: False,
’sticky_navigation’: True,
’navigation_depth’: 4,
’includehidden’: True,
’titles_only’: False

}

html_logo = ’../foobar-title.png’
html_favicon = ’../foobar-icon.png’
html_last_updated_fmt = ’’
html_copy_source = False
html_show_sourcelink = False
html_show_sphinx = False

html_static_path = [’_static’]

So that inner cross-RST file references can be found:
default_role = ’any’

Adding Content

This is just a matter of adding *.rst files (each defining at least one title) in
the source directory, and to reference them in a least one table of contents (e.g.
in source/index.rst), like in:

.. toctree::
:maxdepth: 2
:caption: Contents:

156

https://sphinx-rtd-theme.readthedocs.io/en/latest/
https://sphinx-rtd-theme.readthedocs.io/en/latest/configuring.html

./foobar.rst

./buz.rst

The result in a static website that can safely be transferred and served by
any webserver of choice.

Inner Links with Sphinx

We recommend allowing referencing sections based on their title (each title be-
coming a possible link target). This is done by adding, among the extensions,
the ’sphinx.ext.autosectionlabel’ one. Adding in turn, among the suppress_warnings,
the ’autosectionlabel.*’ one is then useful to silence messages like WARNING:
duplicate label foo, other instance in bar.rst.

Then, in our preferred approach for inner links, described here and there,
such links - which are possibly defined and referenced in different RST files - are
to be managed in a slightly different way than for Docutils’s inner links; indeed
in order to be able to reference:

• label sections (i.e. titles in the document):

– first, as shown in the conf.py example above, the default_role =
’any’ setting should be specified

– then, each inner link target (e.g. a Brief Answers title) shall be
referenced like with Docutils but without a trailing underscore, e.g.
as ‘brief answers‘ (rather than as ‘brief answers‘_); optionally
such references may be prefixed with :ref:, like in: :ref:‘brief
answers‘; if wanting to have a specific text displayed for a reference,
just use for example ‘my text <brief answers>‘ (or :ref:‘my text
<brief answers>‘)

• custom anchors:

– one must be defined with: .. _my anchor: or, more classically, as
.. _‘my anchor‘:

– then, like for label sections, be referenced as: ‘this is the text
of the link <my anchor>‘; optionally such links may be prefixed
with :ref:, like in: :ref:‘this is the text of the link <my
anchor>‘; at least in our tests, using just :ref:‘my anchor‘ (i.e.
not indicating a specific text for the link) would not work (and
would result in WARNING: Failed to create a cross reference.
A title or caption not found: ’my anchor’)

The Problem of Nested Includes

We would have liked to organise a Sphinx document according to a filesystem
tree, so that there is in each directory a RST file that comprises the content
for that level and that just lists its direct local children as the RST files in
its subdirectories, as relative files, like, in a a/b/c/c.rst file: .. include::
d/d.rst.

157

https://stackoverflow.com/a/70355341
https://www.sphinx-doc.org/en/master/usage/referencing.html#role-any

Strangely enough, it worked for 3-level nesting (a, a/b and a/b/c), but not
for the next level: even though the RST files in c where included as d/d.rst,
they were never found:

a/b/c/c.rst:4: CRITICAL: Problems with "include" directive path:
InputError: [Errno 2] No such file or directory: ’a/b/d/d.rst’.

(we can see that c is lacking; no way of adding it once; and trying there
to specify .. include:: c/d/d.rst results in a/b/c/c/d/d.rst not being
found...)

The only (unsatisfactory) solution we found it is specify paths that are "ab-
solute" (i.e. relative to the root of the tree), for example as .. include::
/a/b/c/d/d.rst.

Miscellaneous
These hints apply more generically than only with a RST toolchain.

Validating / Checking HTML Content

In addition to the verification of the messages reported when the document is
built, some tools allow to perform some checks on a generated document.

Notably an online HTML page, or set of pages, can be verified by third-party
tools like this one, to detect dead links.

Fixing Permissions in Third-Party Content to Integrate in a Web
Root

The objective is to ensure that a filesystem tree can be transferred as a whole
without permission errors to a given server more than once, whereas the des-
tination user and group (typically specialised and restricted on a server) differ
from the source ones.

It is indeed often necessary to fix permissions in a third-party tree before it
is transferred to a server (e.g. MathJax being copied from a client host through
scp in a web root on a given server); otherwise the next transfers will stumble on
the initial, inadequate group rights, typically preventing them to be overwritten
by a process belonging to a different user yet being in the same group, like 700
instead of 770 - resulting in Permission denied errors.

For that we recommend executing our fix-www-metadata.sh script in the
source root prior to transfer it to a webroot of choice. This typically ap-
plies to MathJax (see the Rendering Mathematical Elements section), which
therefore should not be installed in the system tree thanks to a package man-
ager (as our script will alter its permissions) but in the user account (e.g. as
~/Software/mathjax).

So typically this script shall be symlinked in each third-party root of interest,
and be executed there at each update thereof.

However doing so does not solve all issues: the file entries created/updated by
scp on the server will be owned by the user on the server implied by the scp com-
mand, for example stallone:users - not the desired web-srv-user:web-srv-group.
Of course the fix-www-metadata.sh script can be run (by root) on the server to
correct that. Yet the next update of this webroot will fail again with Permission

158

https://www.deadlinkchecker.com/
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/fix-www-metadata.sh

denied errors, as the groups are not expected to match anymore (we cannot
overwrite with our client-side users group a remote directory whose permission
is 770 that is owned by group web-srv-group).

A solution is to ensure that the source content bears already the target
group. As scp relies on user/group IDs, not on names (e.g. on a numerical GID
like 1001, not a name like users or web-srv-group), the simplest solution is to
determine the actual GID of the target group on the server (e.g. running, as root,
grep web-srv-group /etc/group may tell us that the GID of web-srv-group
is 1002 there) and to create on the client a group with the same GID (if ever
possible - that is if there is not already another group happening to have be set
to that GID) and to apply it to the source content to transfer, like in:

We are on the "client", source host, as root:
(web-srv-group-of-target-server clearer than web-srv-group)
$ groupadd --gid 1002 web-srv-group-of-target-server
$ usermod -a -G web-srv-group-of-target-server stallone
$ chgrp -R web-srv-group-of-target-server /home/stallone/mathjax

Then, afterwards, when the stallone user performs his scp repeatedly to
transfer updated versions of his mathjax directory from the client to the server,
he should be able to perform a flawless update of its files and directories.

Pointing to a Specific Moment in a Linked Video

It is as simple as designating, in an HTML link, the targeted second by suffixing
the URL video filename with #t=DURATION_IN_SECONDS, like in some-video.mp4#t=147341.

Conversion between Markup Formats

Pandoc is the tool of choice for such operations, as it often yields good results.
For example, in order to convert a page written in Mediawiki syntax, whose

source content has been pasted in a old-content-in-mediawiki.txt file, into
one that be specified in a GitLab wiki (hence in GFM markup, for GitLab Fla-
vored Markdown) from a converted content, to be written in a converted-content.gfm
file, one may use:

$ pandoc old-content-in-mediawiki.txt --from=mediawiki --to=gfm --standalone -o converted-content.gfm

Or, for older versions of pandoc not supporting a gfm writer:
$ pandoc old-content-in-mediawiki.txt --from=mediawiki --to=markdown_github --standalone -o converted-content.gfm

Then the content in converted-content.gfm file can be pasted in the target
GitLab wiki page.

Another example is the conversion of a GitLab wiki page into a RST docu-
ment (e.g. then for a PDF generation):

41With mplayer, use the o hotkey to display elapsed durations.

159

https://pandoc.org/

$ pandoc my-gitlab-wiki-extract.gfm --from=gfm --to=rst --standalone -o my-converted-content.rst

Or, for older versions of pandoc not supporting a gfm reader:
$ pandoc my-gitlab-wiki-extract.gfm --from=markdown_github --to=rst --standalone -o my-converted-content.rst

Finally, if really needing to generate a Word document, an example may be:

$ pandoc my-document.rst --from=rst --to=docx -o my-converted-document.docx

The lists of the input and output formats supported by Pandoc and of their
corresponding command-line options is specified here.

These options are also returned by: pandoc --list-input-formats and
pandoc --list-output-formats (or, for older versions of pandoc, thanks to
pandoc --help).

An input file may not be encoded in UTF-8, which can result in:

pandoc: Cannot decode byte ’\xe9’: Data.Text.Internal.Encoding.Fusion.streamUtf8: Invalid UTF-8 stream

In this case, the actual encoding shall be determined, for example with:

$ file input.html
input.html: HTML document, ISO-8859 text

Then the encoding may be changed before calling pandoc, for example like:

$ iconv -f ISO-8859-1 -t utf-8 input.html | pandoc --from=html --to=markdown_github --standalone -o output.gfm

Transformation of PDF files

For that, one may use the pdftk tool, possibly with the convert one, which
comes from ImageMagick (typically available thanks to a imagemagick package):

• to split all pages of a PDF in as many individual files (named pg_0001.pdf,
pg_0002.pdf, etc.): pdftk document.pdf burst

• to extract a range of pages from a PDF: pdftk original-document.pdf
cat 276-313 output my-extract.pdf

• to convert a PDF file (typically a single page) into a PNG one (typ-
ically in order to edit the PNG with The Gimp afterwards): convert
pg_000x.pdf pg_000x.png

• to convert (possibly back) a PNG file to a PDF one: convert pg_000x-modified.png
pg_000x-modified.pdf

• to concatenate PDFs: pdftk 1.pdf 2.pdf 3.pdf cat output 123.pdf

PDF documents may contain images/scans (possibly of texts) and/or actual,
raw texts. If a PDF is a scan, OCR (Optical character recognition) can be used
in order to convert the embedded scans into their actual text. Such a transfor-
mation can be done online, and we found PDF24 very useful for that. From
such services, usually a PDF (thus including text instead of images) is gener-
ated. To obtain a text version thereof respecting its layout (typically to pre-
serve the indentation of a scanned program), one may use: pdftotext -layout
my-OCRed-document.pdf in order to enjoy a proper my-OCRed-document.txt.

160

https://pandoc.org/MANUAL.html#general-options
http://www.imagemagick.org/
https://en.wikipedia.org/wiki/Optical_character_recognition
https://tools.pdf24.org/fr/ocr-pdf

Image Transformations

One may rely on:

• GIMP (GNU Image Manipulation Program; corresponding, on Arch, to
the gimp package), for bitmap (e.g. PNG) graphics

• Inkscape, for vector-based (e.g. SVG) graphics

• or on command-line ImageMagick (on Arch Linux, install the imagemagick
package, which provides notably the convert and display executables)

Inverting an Image To invert/negate an image (swap colors with their com-
plementary ones, while preserving alpha coordinates):

$ convert source.png -channel RGB -negate target.png

See also the Myriad’s automatic rules, which generate X-negated.png from
X.png thanks to: make X-negated.png.

Rendering a Vector Image at a given Scale/Size Let’s suppose that
a SVG file is available (for example obtained thanks to our latex-to-image.sh
script).

Going for a PNG of a width of 1000 pixels while selecting a high-enough
DPI, preserving the aspect ratio and keeping the background transparent:

$ convert -density 1200 -size 1000 -background none latex-formula.svg target.png

Setting a background to a solid color (e.g. white) may allow, when adding
a border, to have its color applied only on that border (rather than on the full
background).

Adding a Border to an Image For example to add a 10-pixel wide / 5-pixel
tall red border to an image:

$ magick source.png -bordercolor red -border 10x5 target.png

A more classical 2-pixel thick black border:

$ magick source.png -bordercolor black -border 2 target.png

Compositing/Blitting an Image onto Another Let’s suppose we have
an overall, larger image (e.g. my-overall-plot.png) onto which we want to
composite / blit a smaller one (e.g. my-formula.png) at position (100,150) - in
pixels, relatively to the top-left corner - with no specific scaling:

$ magick composite my-formula.png my-overall-plot.png -geometry +100+150 target.png

161

https://www.gimp.org/
https://inkscape.org
https://imagemagick.org
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/latex-to-image.sh

Positioning the inner image based on "gravity" (preset areas, based on var-
ious possible origins; see magick -list gravity) is often convenient; for ex-
ample relatively to the bottom-right corner of the final image (knowing that
positive axes are then, for "SouthEast", the opposite of the default ones - posi-
tive coordinate offsets have therefore to be specified in order to go towards the
center):

$ magick composite my-formula.png my-overall-plot.png -gravity SouthEast -geometry +50+200 target.png

Or simply to have the inner image centered into the overall one:

$ magick composite my-formula.png my-overall-plot.png -gravity Center target.png

See also our affix-images.sh script.

Plot Generation

Refer to our data display section.

UML Diagrams

If SysML can also be of interest, we focus here on UML2 class diagrams (one of
the 14 types of diagrams provided by UML2).

Quick UML Cheat Sheet

Multiplicities A multiplicity is a definition of cardinality (i.e. number
of elements) of some collection of elements.

It can be set for attributes, operations, and associations in a class diagram,
and for associations in a use case diagram. The multiplicity is an indication of
how many objects may participate in the given relationship.

It is defined as an inclusive interval based on non-negative integers, with *
denoting an unlimited upper bound (not, for example, n).

Most common multiplicities are:

• no instance or one instance: 0..1

• any number of instances, including zero: * (shorthand for 0..*)

• exactly k instances: k (so, if k=5, 5)

• at least M instances: M..* (2..*)

• at least M instances, but no more than N (hence bounds included): M..N
(e.g. 3..5)

For associations, the default multiplicity is automatically is 0..1, while new
attributes and operations have a default multiplicity of 1.

162

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/affix-images.sh
DataManagement.html#data-display
https://en.wikipedia.org/wiki/Systems_Modeling_Language
https://en.wikipedia.org/wiki/Class_diagram

Association An association is a relation between two classes (binary
association) or more (N-ary association) that describes structural relationships
between their instances.

For example a polygon may be defined from at least 3 vertices that it would
reference, whereas a point may take part to any number of polygones (including
none):

(see the sources of this diagram)
The multiplicity of an endpoint denotes the number of instances of the

corresponding class that may take part to this association. For example, at
least 3 points are needed to form a polygon, whereas any number of polygons
can include a given point.

In UML the direction of the association is easily ambiguous (here we have
to rely on external knwoledge to determine whether a polygon is composed of
points, of if a point is composed of polygons). Adding a chevron (like > or <,
e.g. "references >" ; ideally this should be a small solid triangle) to the text
is not a good solution either, as the layout may place the respective endpoints
in any relative position. Adding an arrow to the end of the line segment cannot
be done either, as it would denote the navigability of the association instead.

Aggregation An aggregation is a specific association that denotes that
an instance of a class (e.g. Library) is to loosely contain instances of another
class (e.g. Book), in the sense that the lifecycle of the contained classes is not
strongly dependent on the one of the container (e.g. books will still exist even
if the library is dismantled).

Here a library may contain any number of books (possibly none), and a given
book belongs to at most one library.

(see the sources of this diagram)

163

https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/tree/master/doc/uml_association_diagram.graph
https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/tree/master/doc/uml_aggregation_diagram.graph

Composition A composition is a specific association that denotes that
an instance of a class (e.g. HumanBeing) is to own instances of another class
(e.g. Leg), in the sense that the lifecycle of the contained classes fully depends
on the one of the container (here, if a human being dies, his/her legs will not
exist anymore either).

Here a human being has exactly 2 legs, and any given leg belongs to exactly
one human being (therefore this model does not account for one-legged persons).

(see the sources of this diagram)

Inheritance An inheritance relationship is a specific association that
denotes that a class (e.g. HumanBeing) is a specific case of a more general one
(e.g. Animal), and thus that an instance of the first one is also an instance of
the second one ("is-a" relationship).

Here a human being is a specific animal.

(see the sources of this diagram)

Tooling In a design phase, one may prefer lightweight tools like Graphviz,
PlantUML or even Dia.

As long as the architecture of a framework is not stabilised, having one’s
tool determine by itself the layout of the rendering (rather than having to place
manually one’s graphical components) is surely preferable.

For that we use Graphviz, with our own build conventions.
For example, supposing this diagram example, i.e. a source file named

uml_class_diagram_example.graph:

$ make uml_class_diagram_example.png
or, to force a regeneration and a displaying of the result:

164

https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/tree/master/doc/uml_composition_diagram.png
https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/tree/master/doc/uml_inheritance_diagram.graph
https://graphviz.org/
https://plantuml.com/
https://en.wikipedia.org/wiki/Dia_(software)
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/GNUmakerules-docutils.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/doc/uml_class_diagram_example.graph

$ make clean uml_class_diagram_example.png VIEW_GRAPH=true

This example results in the following diagram:

(see the sources of this diagram)

Finding Usable Content

Assets can be found thanks to Creative Commons, which references, among
others, OpenClipart, otherwise possibly publicdomainvectors.org.

The simplest approach is to rely on SVG files, to edit them on Inkscape
(select any subset of interest of the image), and possibly to export a selection
of them as PNG files of the desired size (in the Export pane, enable the Export
Selected only option and, in the Image Size tab, set the absolute width and/or
height wanted).

In order to find the icons needed to devise a GUI from open elements, refer
to the tremendously useful iconify.design website.

Using Additional Fonts

One may use websites like Dafont in order to select, based on appearance and
licence, a given TTF font.

At least on Arch, it is sufficient to copy the corresponding downloaded TTF
file (as root) in /usr/share/fonts/ so that tools like The Gimp support it right
afterwards (e.g. no need to run fc-cache beforehand).

165

https://github.com/Olivier-Boudeville/Ceylan-HOWTOs/tree/master/doc/uml_class_diagram_example.graph
https://search.creativecommons.org/
https://openclipart.org
https://publicdomainvectors.org
https://icon-sets.iconify.design/
https://www.dafont.com

Data Management
Organisation: Copyright (C) 2022-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Saturday, November 20, 2021

Lastly updated: Wednesday, March 19, 2025

Table of Contents
Overview . 155
General-Purpose Data Format 155

Language-Independent Data Formats 155
Erlang-Friendly Data Format: ETF 157

Data-related Processing Tools 157
Common Hints About Scilab and Octave 157
Using Scilab . 159
Using Octave . 160
Using Maxima . 161
Using LibreOffice . 163

Data-related Displaying Tools 163

Overview
This section concentrates information about data management, including
data formats and data processing tools.

General-Purpose Data Format
Such a format is typically useful to hold configuration information.

We prefer JSON to, for example, YAML, due to the Python-style indentation
on which the latter relies in order to indicate nesting.

Language-Independent Data Formats

JSON A JSON document is in plain-text and may contain:

• basic types:

– Number: 2 or 4.1

– String: "I am a string"

– Boolean: true or false

– null: to denote an empty value

• attribute-value pairs (e.g. "firstName": "John")

• "arrays" (ordered lists), e.g. "myNumbers": ["12", "7", "4"]

• "objects" (collection of name-value pairs), e.g.

166

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/YAML

{

"address": {
"streetAddress": "21 2nd Street",
"city": "New York"

}

}

The order in arrays is expected to be preserved, but not the one of the
elements in an object.

Defining an element (e.g. an attribute-value pair) more than once is allowed,
and the last instance thereof will be the one kept.

For instance:

{
"tcp_port": 8084,
"tcp_port": 8085,
[...]

}

Here, once the document is parsed, tcp_port will be considered equal to
8085.

Pretty-Printing On GNU/Linux, one may rely on jq, a command-line
JSON processor.

For instance: jq . my_document.json.

Validating One may consider that a given document is a legit JSON one
iff jq type reports a non-empty output.

Example:

$ jq type my_document.json
"object"

Example Regarding syntax, a typical JSON document is:

{
"firstName": "John",
"__comment": "This is a comment!",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [

167

https://en.wikipedia.org/wiki/JSON#Syntax

{
"type": "home",
"number": "212 555-1234"

},
{

"type": "office",
"number": "646 555-4567"

}
],
"children": [],
"spouse": null

}

Specifying comments With JSON, there is, on purpose, no built-in way
to add comments.

The sole solution/workaround is to add comments as specific fields, although
they will end up as data like the other fields.

We recommend to mark them specifically (e.g. as __comment) so that they
should not interfere with the "real" data. As an example, see the second key of
the previous JSON document.

YAML YAML is a data serialization language for all programming languages.
We prefer the .yaml extension to the .yml one.
No tabulation should be used for indentation, only spaces, and preferably a

fixed amount of them; we used to prefer 4, now 2, since it allows to properly
align the items listed with a dash (e.g. "- I am an item").

With Emacs, the Yaml Mode may be of help.

Erlang-Friendly Data Format: ETF

Such a format is typically useful to hold configuration information in an Erlang
context.

We recommend the use of ETF (the Erlang Term Format), that we find
particularly useful and even more suitable than JSON (entry order preserved,
comments supported, etc.).

Data-related Processing Tools
Whenever needing to perform numerical operations on data, we recommend
the use of Scilab or GNU Octave, which are the two major open-source alter-
natives to MATLAB.

As such, the three of them support mostly the same syntax (even if Scilab
puts less emphasis on syntactic compatibility with MATLAB than Octave does).

From now on, the specific tool being used among the two MATLAB alter-
natives will not be specifically mentioned (mentioning "the tool" instead). We
tried both alternatives and had more issues (build/installation, proper display)
with Scilab, so we mostly used Octave, but did not find it very user-friendly.

168

https://yaml.org/
https://www.emacswiki.org/emacs/YamlMode
http://myriad.esperide.org/#etf
https://www.scilab.org/
https://www.gnu.org/software/octave/
https://en.wikipedia.org/wiki/MATLAB

Note
A personal consideration: for basic uses, relying on a generic-purpose
programming language remains often vastly more convenient.

Common Hints About Scilab and Octave

Syntax Putting a semicolon at the end of statement prevents the console from
printing the corresponding value (answer, variable assignment, etc.).

Value Ranges Ranges can be expressed thanks to:

• MIN:STEP_SIZE:MAX, like in: x = -10:2:10 resulting in 11 points

• or linspace(MIN, MAX, STEP_COUNT), like in: x = linspace(-10, 10,
11) to produce the same list as before

Array-based Functions Many functions are defined so that they can be
called also with arrays of parameters, instead of just standalone values. For
that, a dot/period-based syntax has been introduced so that each element of
an input vector is applied to the function in turn. A key understanding is that
such a dot applies not to variables but to operators; for example 2*x.^2+1 shall
not be read as 2*(x.)^2+1 but as 2*x(.^)2+1.

As an example, a 𝜑 function can be defined42 as 𝜑(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥):

function retval = phi (x)
retval = exp(x)./(1+exp(x));

endfunction

Then this function can be called either with a standalone value:

phi(1)
ans = 0.7311

or with an array thereof (a vector):

phi([1,2])
ans =

0.7311 0.8808

Outputs Beware to the lower-precision of textual outputs, which may be mis-
leading (e.g. use format long with Octave to request 15 significant figures).

Script Files Rather than being directly interpreted (e.g. from a pasted text),
a series of statements can be gathered in a script file (a bit different from a
function file43) that can be loaded and executed afterwards.

42Note that, for basic operation like additions, the .+ operator has been deprecated in favor
of just +.

43A so-called "function file" is one that starts with a function definition and that must only
be called from a "script file".

169

Their conventional extension in m (e.g. foobar.m), due to the MATLAB
legacy.

Avoid dashes in the script filenames, as it may be interpreted as minus;
prefer underscores (e.g. phi_exp.m rather than phi-exp.m).

An example of script, named phi_exp.m:

An initial comment prevents Octave from thinking that this
is a function file:
1;

The function name can be freely chosen, it does not have to
correspond to the script filename:
#
function retval = phi_exp (x)

retval = exp(x) ./ (1+exp(x))
endfunction

xs = -10:10
ys = phi_exp(xs)

plot(xs,ys)

title ("A function phi to map values V to a probability-suitable]0,1[interval")
ylabel ("\phi(V)")
xlabel ("V")
grid on

Provided that such a script is located in a well-known directory of the tool
(typically its working directory), it can be executed simply by entering its file-
name without extension; for example:

octave:1> phi_exp
warning: function ’phi_exp’ defined within script file ’xxx/phi_exp.m’
xs =
-10 -9 -8 [...]

Then a script can be run from the command-line; for example:

$ octave --eval phi_exp.m --persist
OR
$ octave phi_exp.m

Using Scilab

Scilab may be best obtained, on Arch Linux, from the AUR (e.g. yay -Sy
scilab) by selecting the scilab-bin option (relying then on prebuilt binaries);
it can then be run with: scilab.

We experienced quite a few issues in order to obtain Scilab by any means.
A last-resort option is to rely on an AppImage instead; one may then sandbox it:
first the Scilab AppImage shall be downloaded, for example as ~/Scilab-x86_64.AppImage.
Then:

170

https://appimage.github.io/Scilab/
GNULinux.html#sandboxing-an-application
https://github.com/davidcl/Scilab.AppDir/releases

$ mkdir -p ~/Software/scilab
$ cd ~/Software/scilab
$ mv ~/Scilab-x86_64.AppImage .
$ chmod +x Scilab-x86_64.AppImage
$ firejail --appimage ./Scilab-x86_64.AppImage &

Once installed that way, our run-scilab.sh can be used instead.
Note that the copy/paste behaviour is not consistent with the usual UNIX/X11

one, and that tabulation can be used for auto-completion.
Scilab does not seem to offer any symbolic support out of the box. See Using

Maxima instead (knowing that Maxima may be integrated within Scilab).

Defining a Function Let’s suppose we want to define 𝑚𝑦_𝑓𝑢𝑛𝑐 : 𝑥 → 2.𝑥2+
1.

For that, in Scilab’s shell, enter:

--> function [y] = my_func(x)
> y = 2*x^2+1
> endfunction

Then:

--> my_func(5)
ans =

51.

Plotting a Function Let’s define the support of our function, here computed
from 0 to 10 with 50 values: my_xs = linspace(0, 10, 50). Then just execute
plot(my_xs, my_func).

We experienced rendering issues that prevented a proper display of plots.

Using Octave

Octave can be installed on Arch Linux with pacman -Sy octave; extra packages
may be needed (e.g. octave-quaternion, available in the AUR).

The command-line version can be run as octave. Typing quit at the prompt
allows to exit.

The GUI version can be launched with octave --force-gui.

Defining a Function As already seen, so that it can operate on single values
or arrays, a 𝜑(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥) function can be defined as:

function retval = phi (x)
retval = exp(x)./(1+exp(x))

endfunction

Plotting a Function We consider first a function of a single variable.
Let my_xs = 0:0.2:10 define44 the support / display range of our function;

then:

171

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/run-scilab.sh
https://octave.org/

my_ys = my_func(my_xs)
plot(my_xs, my_ys)

A key point is to understand that, for all plots (plot, mesh, surf, etc.), the
last element to be specified is not the function to which the previous elements
are to be applied, but directly the final values to plot.

Extra display settings can be added afterwards:

title ("This is my title")
ylabel ("My ordinate label")
xlabel ("My abscissa label")
grid on

This results in:
The image can be saved either by using the Save As GUI menu and typi-

cally selecting PNG, or directly from the console/scripts thanks to the following
command: print("my_plot.png", "-dpng").

Using Maxima

Maxima is a free software (GPL) tool for the manipulation of symbolic and
numerical expressions.

It can be installed on Arch with pacman -Sy maxima.
A graphical frontend exists, considerably more user-friendly, and useful for

teaching the use of Maxima: wxmaxima; it is available on the Arch AUR, yet its
build fails at the time of this writing; it has however an AppImage - just try to
find a recent wxmaxima-x86_64.AppImage there.

One may then store this image in ~/Software/maxima/ and run it either di-
rectly or in a sandboxed environment: firejail --appimage wxmaxima-x86_64.AppImage;
see also our run-maxima.sh script.

For example, taking into account that (refer to this introduction for more
details):

• to assign a value to a variable, use the colon (: ; for example: a :
[1,2]), not the equal sign (that is used for representing equations)

• each statement is to be ended, on:

– the command-line: with a semi-colon (;) followed by Enter

– the GUI: with just Shift-Enter (the semi-colon is auto-added; Enter
is used here for multiline inputs)

• one shall enter quit(); to exit

• a general matrix m may be defined that way:

44The range syntax is Min:StepSize:Max. As Min and Max are both included, my_range =
0:0.2:1 would correspond therefore to a vector of 6 values: [0, 0.2, 0.4, 0.6, 0.8, 1].

Alternatively linspace can be used in order to specify the number of points (rather than
the step size); for example linspace(0,5,9) is a vector of 9 evenly-spaced points between 0
and 5 (both included: [0, 0.625, 1.25, 1.875, 2.5, 3.125, 3.75, 4.375]).

172

https://maxima.sourceforge.io/
https://github.com/wxMaxima-developers/docker-wxmaxima/releases
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/run-scilab.sh
https://maxima.sourceforge.io/docs/manual/intromax.html

m: matrix(
[m11,m12,m13,tx],
[m21,m22,m23,ty],
[m31,m32,m33,tz],
[0,0,0,1]

);

• a diagonal matrix s may be defined that way:

s: matrix(
[Sx,0,0,0],
[0,Sy,0,0],
[0,0,Sz,0],
[0,0,0,1]

);

• a diagonal matrix t may be defined that way:

t: matrix(
[1,0,0,trx],
[0,1,0,try],
[0,0,1,trz],
[0,0,0,1]

);

• multiplication is represented by a dot : m.s;

then Maxima can be directly used in a terminal:

$ maxima
;;; Loading #P"/usr/lib/ecl-23.9.9/sb-bsd-sockets.fas"
;;; Loading #P"/usr/lib/ecl-23.9.9/sockets.fas"
Maxima 5.47.0 https://maxima.sourceforge.io
using Lisp ECL 23.9.9
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
[...]
(%i1) m: matrix(
[m11,m12,m13,tx],
[m21,m22,m23,ty],
[m31,m32,m33,tz],
[0,0,0,1]

);
[m11 m12 m13 tx]
[]
[m21 m22 m23 ty]

(%o1) []
[m31 m32 m33 tz]
[]
[0 0 0 1]

173

(%i2) s: matrix(
[Sx,0,0,0],
[0,Sy,0,0],
[0,0,Sz,0],
[0,0,0,1]

);
[Sx 0 0 0]
[]
[0 Sy 0 0]

(%o2) []
[0 0 Sz 0]
[]
[0 0 0 1]

(%i3) m.s;
[Sx m11 Sy m12 Sz m13 tx]
[]
[Sx m21 Sy m22 Sz m23 ty]

(%o3) []
[Sx m31 Sy m32 Sz m33 tz]
[]
[0 0 0 1]

Doing the same this time with wxmaxima:
A session can be saved in a file, using the *.wxmx extension.
See also Maxima’s documentation.

Using LibreOffice

To obtain a list of all the different values in a selection The objective
is to determine the set of the different (unique) values in a selection (typically
a whole column).

Once the selection has been defined, select the Data -> More Filters ->
Standard Filter menu item, set the Field name dropdown to "-none -" and,
in the panel for Options settings, enable No duplications.

Then each resulting selected row while have a unique value in the selected
column (the other rows will still exist but not be selected).

Often it might be convenient to sort this selection afterwards; the up/down
arrow icons may be used, and keeping the Current selection is generally used
(rather than extending it).

Data-related Displaying Tools
For that we rely mostly on gnuplot.

Our conventions are the following:

• rely on a recent version of gnuplot (e.g. 5.4)

• the image formats for the generated plots are (large-enough) PNG or SVG
(better in spirit, yet usually of higher file size, and with a slightly different
rendering)

174

https://maxima.sourceforge.io/docs/manual/maxima_toc.html#SEC_Contents
http://www.gnuplot.info/

• the extension of command files is p (e.g. foobar.p), the one for data files
that they refer to is dat (e.g. foobar.dat); running gnuplot scripts is
then as simple as executing gnuplot foobar.p

Besides generating images, gnuplot is able, thanks to interactive terminal
types (like qt), to let the user navigate in the plots (e.g. move around, zoom
on them).

As an example to be copied in a hyperboloid.p command file:

reset
set grid
set parametric
set view equal

splot [-pi:pi][-2.5:2.5] cos(u)*sinh(v), sin(u)*sinh(v), cosh(v), cos(u)*sinh(v), sin(u)*sinh(v), -cosh(v)

set terminal qt persist
pause mouse close

Then running gnuplot hyperboloid.p results in an interactive viewer like:
that we can explore with the mouse and/or keyboard. Press the h key to

list the available mouse/keyboard commands.
Based on our Erlang developments, we implemented the plot_utils module,

which is a library (relying on gnuplot) to generate plots more conveniently.

175

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/opengl-augmentation/src/maths/plot_utils.erl

Emacs
Organisation: Copyright (C) 2025-2025 Olivier Boudeville

Contact: about (dash) howtos (at) esperide (dot) com

Creation date: Sunday, March 16, 2025

Lastly updated: Friday, May 2, 2025

Table of Contents
Overview . 165
Installation . 165
Configuration . 165

General Configuration . 165
Topic-specific Configurations 166

Regarding Package Management Itself 166
Regarding Erlang . 166

Wrapping-up Configurations 167
Hints . 167

Emacs Parlance . 167
Key Bindings . 167
Frequent Actions . 169
Package Managers . 170
Elisp Hints . 170

Troubleshooting . 171
Handling Errors . 171
Relying a safe, minimal, fallback Emacs 172

Overview
Emacs is a family of free software text editors that are characterised by their
extensibility and their ability to be customised at will.

Installation
Quite surprisingly, Emacs still changes a lot (notably in terms of function
names), and (Elisp) scripts that work for an Emacs version may not work for
the next one. So at least controlling one’s version may be of use; run for that
emacs --version. We consider using here Emacs 30.1 or more recent.

Of course the best option to install Emacs is to use a (OS-level) package
manager, for example: apt-get install emacs - if the supported version is
not too ancient.

Otherwise, to perform a manual installation of Emacs on one’s user account,
it must be first downloaded; one may thus fetch for example emacs-30.1.tar.xz.

Prerequisites may be needed; running - unfortunately as root - apt-get
build-dep emacs or alike may be of use, or at least having packages like
libgtk-3-dev and librust-tree-sitter-dev installed.

Then:

176

https://en.wikipedia.org/wiki/Emacs
https://www.gnu.org/software/emacs/download.html

$ mkdir -p ~/Software/Emacs && cd ~/Software/Emacs
$ EMACS_VERSION=30.1
$ mv ~/Downloads/emacs-${EMACS_VERSION}.tar.xz .
$ tar xvJf emacs-${EMACS_VERSION}.tar.xz
$ cd emacs-${EMACS_VERSION}
If not having these dependencies:
$./configure --with-xpm=ifavailable --with-gif=ifavailable \
--with-tiff=ifavailable --with-gnutls=ifavailable --prefix=${HOME}/Software/Emacs/emacs-${EMACS_VERSION}-install
$ make install
$ cd .. && ln -s emacs-${EMACS_VERSION}-install emacs-current-install

Then one’s shell environment shall be updated once for all with:

$ export PATH="${HOME}/Software/Emacs/emacs-current-install/bin:${PATH}"

Configuration
General Configuration

Our base Emacs configuration, init-myriad-base.el, is designed to be minimal
enough not to depend on any third-party element (so it is not relying on a
package manager).

It may be used as:

• a simple configuration of its own, for example on servers (hence just
on the console, with no GUI), typically once copied or symlinked as
~/.emacs.d/init.el

• a fallback configuration, useful when a reliable, unaffected editor is needed
to debug one’s Emacs configuration (see Relying a safe, minimal, fallback
Emacs for that) - a base configuration expanded (i.e. included) by more
involved / specialised configurations, akin to our main, most complete
Emacs configuration for daily usage, init-myriad-fully-integrated

Topic-specific Configurations

In addition to these previous base or complete configurations, we defined mod-
ular, specialised configuration files for a few topics.

First, the standalone ones, i.e. the specialisations that do not depend on any
specific (third-party) package (but still depend on our base Emacs configuration,
init-myriad-base.el), are:

• init-myriad-rst-base.el for the support of ReStructuredText

• init-myriad-erlang-base.el, for the basic support of Erlang, following the
official guidelines (with no extra tooling involved)

• init-myriad-c-cpp-base.el, for a basic support of C/C++

• init-myriad-python-base.el, for a basic support of Python

177

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-base.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-fully-integrated.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-rst-base.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-erlang-base.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-c-cpp-base.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-python-base.el

• init-myriad-sensitive.el, to edit sensitive files (therefore with an increased
security); if this configuration is available, it is used for example by our
open-credentials.sh script

Now the configurations involving extra, specific packages are discussed.

Regarding Package Management Itself We rely on init-myriad-package-
management.el in order to setup a proper management of Emacs packages. It is
a prerequisite of all next configurations below, and is currently based on elpaca.

Regarding Erlang We propose init-myriad-erlang-advanced.el, to provide
additional tooling on top of the prior init-myriad-erlang-base.

It requires erlang_ls, which can be typically obtained thanks to:

$ mkdir -p ~/Software
$ cd ~/Software
$ git clone https://github.com/erlang-ls/
$ cd erlang_ls && make && mkdir bin && cd bin
$ ln -s ../_build/default/bin/erlang_ls
Then add ${HOME}/Software/erlang_ls/bin to your PATH.

erlang_ls shall be regularly updated (e.g. with: cd ${HOME}/Software/erlang_ls
&& git pull && make all).

Its per-user configuration can be defined in ~/.config/erlang_ls. We pre-
fer that it is a symbolic link to our own version thereof.

One may refer to ~/Software/erlang_ls/misc/dotemacs for a configura-
tion example.

Wrapping-up Configurations

Finally, an optional local (host-specific) configuration file (to define relevant
initial window sizes for that host, any specific proxy, etc.) will be loaded iff
found available as ~/.emacs.d/init-myriad-local.el; see this init-myriad-
local.el as an example thereof.

All the configuration files that have been listed above are included by the
aforementioned init-myriad-fully-integrated.el one.

For the sake of testing, an instance of Emacs relying on a given configuration
file (typically init.el) can be best run with: emacs --init-directory=$SOME_DIR,
where SOME_DIR contains this configuration file (possibly as a symbolic link);
see also Relying a safe, minimal, fallback Emacs to edit concurrently that con-
figuration file in progress.

Hints
Emacs Parlance

With Emacs:

• a frame is actually a regular GUI window

• a window is a subdivision of a frame (hence to be understood as a window
pane)

178

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-sensitive.el
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/open-credentials.sh
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-package-management.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-package-management.el
https://github.com/progfolio/elpaca
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-erlang-advanced.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/erlang_ls.config
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-local.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-local.el
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-fully-integrated.el

• a buffer is the content shown in a window

• (the) point is the (current) cursor position

• the mark is the beginning of the current selection (typically set by C-SPC
at the current point)

• ELPA stands for Emacs Lisp Package Archive (see more package-related
explanations):

– GNU ELPA is ~450 packages, considered part of Emacs

– NonGNU ELPA contains third-party packages whose copyright has
not been assigned to the Free Software Foundation

– MELPA for Milkypostman’s Emacs Lisp Package Archive; ~6000
packages that can be freely added

Key Bindings

Here C corresponds to the "Ctrl" key, M the "Meta" one (i.e. "Alt", generally), S
to the Shift one, s to the Super one (a.k.a. the infamous Windows/Command
key), - is just a separator between a modifier (like Ctrl, Meta, etc.) and an
actual key to press while the modifier is still held down. RET means the Enter
key, SPC the spacebar, L_ARROW / M-R_ARROW the left / right arrow keys, and
U_ARROW / D_ARROW the up / down arrow keys.

For example C-x C-- means: press and hold the "Ctrl" key, and hit the "x"
key, then release all, then press and hold the "Ctrl" key, and hit the "-" key,
and release all.

At least based on our (Emacs and French keyboard) base settings (i.e. the
ones in init-base.el), the following key bindings trigger the corresponding
actions:

• C-a / C-e: move cursor to leftmost / rightmost position

• C-k: kill all characters on the right from cursor (and thus put them in the
kill ring)

• C-s PATTERN RET / C-r PATTERN RET: perform direct / reverse case-insensitive
search of the specified pattern; then each C-s / C-r will jump direct / re-
verse to any next occurrence; RET will stop the search

• C-d SEARCH_PATTERN RET REPLACE_PATTERN RET: perform replacements,
bound to replace-string (default binding to delete char at cursor -
delete-char - not useful enough, as a dedicated key, the Delete one,
exists for that)

• C-l LINE_NUMBER: go to the specified line

• C-x C-s: save current buffer

• C-x C-k: kill current buffer

• C-x C-c: exit Emacs

• C-g: cancel command/selection

179

https://zellyn.com/2024/08/emacs-packages/
https://zellyn.com/2024/08/emacs-packages/
https://en.wikipedia.org/wiki/Super_key_(keyboard_button)
https://en.wikipedia.org/wiki/Super_key_(keyboard_button)

• C-z: undo last action (or C-x u); to redo, rather than typing C-g C-/
(which would involve a shift, on French keyboards), just perform a non-
editing command (such as C-SPC) and then the next C-z commands will
go in the opposite direction in the undo chain (they will redo)

• C-SPC: set the mark (begin selection)

• C-w: cut selection in the kill ring (selection is thus removed from the
current buffer)

• M-w: copy selection in the kill ring (selection thus remains in the current
buffer)

• C-y: yank (paste from kill ring, replacing any current selection)

• M-y: replace text just yanked with an earlier batch of killed text

• C-p: compile, make

• C-x TAB: indent rigidly, moving the whole selection left/right with M-L_ARROW
/ M-R_ARROW (see also kill-rectangle)

• M-< / : M-S-<: go to beginning / end of the current buffer

• C-x 2: split window horizontally

• C-x 3: split window vertically

• M-D_ARROW / : M-U__ARROW: scroll down / up in the current buffer

• M-R_ARROW / : M-L_ARROW: go to next / previous buffer

• M-q: fill current paragraph (reformat / wordwrap it), i.e. applies fill-paragraph

• M-m: jump to first non-whitespace in the current line

• M-x will allow to enter / select commands from the minibuffer (see our
useful commands section below)

• C-o or F8: perform whitespace cleanup (now a built-in package)

Additionally, with our complete settings, notably with lsp-mode:

• s-d: go to definition of word at cursor (lsp-find-definition)

• s-r: list references to word at cursor (lsp-find-references)

• s-n: rename symbol globally (lsp-rename)

180

Frequent Actions

• to tune the font size:

– temporarily: use C-x C-+ to increase, C-x C-- to decrease (or press
Shift then click the first mouse button to select a relevant option; or,
even better, use C-mousewheel)

– permanently: one may add in one’s Emacs configuration file for ex-
ample: (set-face-attribute ’default nil :height 100)

• to insert special characters (e.g. tab or newline) as raw characters in com-
mands (e.g. in I-search or replace-string): use for example M-x quoted-insert
<tab>, which is often bound (yet not in our conventions) to C-q; note that
pasting a tab with the mouse in the minibuffer works as well

• to insert in the current buffer the output of a shell command: C-u then
M-!: enter that shell command, whose output will be pasted at the current
cursor position

• to prefix all lines of the selected region: C-x then r then t, then type the
prefix then type Enter (useful for example to indent a series of lines)

• to sort alphabetically the selected region: M-x sort-lines

• to go to the matching delimiter (parenthesis, bracket, end of word, etc.):
to go forward, use C-M-f, and to go backward use C-M-b

• to re-select a region (e.g. to perform multiple substitutions in a row on
the same region): C-x C-x

• to abort the current entry in the minibuffer: C-g

• to perform replacements based on regular expressions: M-x replace-regexp
RET regexp RET newstring RET, with this REGEXP syntax (more infor-
mation); for example, to remove, in each line, all characters from the first
comma: M-x replace-regexp RET ,.* RET , RET

• to open a file that is very large and/or difficult to parse/display: M-x
find-file-literally

Other useful commands to trigger, possibly explicitly with M-x:

• replace-string SEARCH_PATTERN REPLACEMENT; add M-c to set the case-
sensitive flag, i.e. to search for the exact string (even if it is lowercase -
otherwise uppercase versions thereof will match); the M-% default shortcut
requires a shift on French keyboards

• query-replace SEARCH_PATTERN REPLACEMENT

• kill-rectangle (operates on a previous selection)

• indent-region (C-M-\ difficult on French keyboards)

See also our Performing a Merge with Emacs section.

181

https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexps.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Replace.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Replace.html
VCS.html#performing-a-merge-with-emacs

Package Managers

There are at least:

• package.el

• straight.el

• Elpaca: Async Emacs Package Manager (current state of the art, and the
one on which we currently rely)

use-package is not a package manager, it is an extensible configuration
macro that is specialised by most of the package managers so that it can be
used with any.

Refer to this page for a comparison of package managers.

Elisp Hints

Emacs Lisp is a Lisp dialect made for Emacs.
See the GNU Emacs Lisp Reference Manual.
An Emacs init file contains a series of Lisp expressions, each of them con-

sisting of a function name followed by arguments (expressions), all surrounded
by parentheses.

For example: (setq fill-column 60) calls the function setq (set quoted)
to set the variable fill-column to 60; as setq affects only the current buffer’s
local value, in an initialisation file setq-default is generally preferred.

• boolean values: t stands for "true", and nil for "false"

• to display a message: (message "Hello world!")

• a leading single-quote makes a symbol a constant - otherwise it would
be treated as a variable name; for example: (setq-default major-mode
’text-mode)

To display messages in standard buffers:

• a regular message (thus in *Messages*): (message "This is my message.")

• a warning message (thus in *Warnings*), with a (warning) type specified:
(display-warning "foo" "This is my warning."); it displays there:
"Warning (foo): This is my warning."

Elisp examples may be the following conditional setting:

(if (boundp ’coding-category-utf-8)
(set-coding-priority ’(coding-category-utf-8)))

Or the next function definition and key binding:

(defun my-split-window-func ()
(interactive)
(split-window-below)
(set-window-buffer (next-window) (other-buffer)))

(global-set-key (kbd "C-x 2") #’my-split-window-func)

182

https://github.com/progfolio/elpaca
https://github.com/radian-software/straight.el?tab=readme-ov-file#tldr-1
https://en.wikipedia.org/wiki/Emacs_Lisp
https://www.gnu.org/software/emacs/manual/html_node/elisp/

If needing to include a configuration file in another:

(load-file "~/elisp/foo.el")

To trigger multiple calls in a single expression, use:

(progn do-this
do-that)

(defun func (arg1 arg2)
"Always document your functions."
<function body>)

(defvar var-name <the value>
"Always document your variables.")

To concatenate filesystem elements: (file-name-concat "/tmp" "foo")
results in "/tmp/foo".

Related Elisp information sources:

• Emergency Elisp

• Learn X in Y minutes Where X=Emacs Lisp

• Emacs Lisp Guide

Troubleshooting
Handling Errors

Sometimes problems arise due to older packages, for example when a new ver-
sion of Emacs is used. This may be solved by removing the cache of the pack-
age manager (e.g. ~/.emacs.d/straight, ~/.emacs.d/elpaca), relaunching
Emacs and waiting for its state (e.g. all related clones) to be downloaded/built
again.

To investigate a problem, one may run Emacs with: emacs --debug-init.

Relying a safe, minimal, fallback Emacs

As many software ecosystems, the Emacs one tends to change/break frequently,
and then one’s init.el cannot be edited anymore with a functional Emacs -
and the whole situation quickly degenerates in a mess.

One way of overcoming these issues is to have multiple versions of Emacs’
configuration, including a very basic one that is never expected to break - just
for the purpose of having at all times a base Emacs to fix the others; this is
one of the purposes of our rather minimal init-myriad-base configuration, to be
used that way:

$ DIR="${HOME}/.emacs.d/myriad-fallback"
$ mkdir $DIR && cd $DIR
$ ln -s $CEYLAN_MYRIAD/conf/init-myriad-base.el init.el

183

https://steve-yegge.blogspot.com/2008/01/emergency-elisp.html
https://learnxinyminutes.com/elisp/
https://github.com/chrisdone-archive/elisp-guide
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/init-myriad-base.el

Then an always-available Emacs may be run with: emacs --init-directory=$DIR,
which can made easily available thanks to, in one’s shell configuration: alias
esafe=’emacs --init-directory=${HOME}/.emacs.d/myriad-fallback’ (esafe
standing for editor safely available).

Alternatively, such a feature can better be implemented thanks to a shell
function (to rely as much as possible on a safe emacs, otherwise on gedit, oth-
erwise on nano); see our .bashrc.basics shell file for that.

Please React!
If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, use the contact address at the top of this document).

Ending Word
Hoping that these Ceylan-HOWTOs may be of help!

184

https://github.com/Olivier-Boudeville/Ceylan-Heavy/blob/master/src/conf/environment/.bashrc.basics

185

186

187

	Table of Contents
	Using the GNU/Linux Operating System
	Overview
	Software Update
	Package Management
	A few System Installation Hints
	Systemd-related Hints
	Process-related Post-Mortem Investigations
	Preparing Adequate USB Keys
	GRUB Ate My Distro Again: Fixing the Bootloader
	Other Filesystem-related Issues
	Quick Topics
	See Also

	Erlang
	Overview
	Let's Start with some Shameless Advertisement for Erlang and the BEAM VM
	Installation
	Ceylan's Language Use
	Using the Shell
	Distributed Mode of Operation
	About Security
	OTP Guidelines
	More Advanced Topics
	Language Bindings
	Language Implementation
	Short Hints
	Micro-Cheat Sheet
	Erlang Resources

	Rust
	Overview
	Documentation
	Installation
	Examples
	Related Tools
	More Advanced Topics
	Mode of Operation
	Quick Facts
	Language Bindings
	Short Hints
	Micro-Cheat Sheet
	Rust Resources

	About 3D
	Cross-Platform Game Engines
	3D Data
	Modelling Software
	Other Tools
	OpenGL Corner
	Operating System Support for 3D
	Minor Topics
	3D-Related Mini-Glossary

	Online Interactive Multimedia
	Overview
	Networking Subsystem
	Application Architecture

	Network Management
	Investigating Network Issues
	Firewall Management
	Network Troubleshooting
	See Also

	A Bit of Cybersecurity
	Pointers to various Security Topics
	Authentication Using SSH
	Securing One's E-mail Service In General
	Increasing Security thanks to OpenPGP
	A Link With Decentralized Identifiers

	About Build Tools
	Purpose of Build Tools
	Choice
	GNU make
	See Also

	Version Control Systems: in Practice, now, Git
	Overview
	Git Usage
	Tools
	Inner Workings
	Translations
	Documentation

	Documentation Generation
	Objective
	Our Preferred Lightweight Approach
	Our Preferred More Heavy-Duty Approach
	Miscellaneous

	Data Management
	Overview
	General-Purpose Data Format
	Data-related Processing Tools
	Data-related Displaying Tools

	Emacs
	Overview
	Installation
	Configuration
	Hints
	Troubleshooting

	Please React!
	Ending Word

