Mobile: Controlling Mobile Phones and 3G Keys from
Erlang

Organisation: Copyright (C) 2019-2020 Olivier Boudeville

Contact: about (dash) mobile (at) esperide (dot) com

Creation date: Sunday, March 3, 2019

Lastly updated: Thursday, January 2, 2020

Dedication: Users and maintainers of the Mobi le library, version 1.0.

Abstract: The role of the Mobile library is to control mobile phones
from Erlang. A typical use case is to send SMS from Erlang thanks
to a connected 3G USB key.
The latest version of this documentation is to be found at the official Mobile website
(http://mobile.esperide.orqg).
The documentation is also mirrored here.

http://mobile.esperide.org
https://olivier-boudeville.github.io/Ceylan-Mobile/mobile-1.0.html

Table of Contents

Mobile: Controlling Mobile Phones and 3G Keys from Erlang 1
OVEIVIEW o o o e e 3
Securing the Prerequisites L 3

Carrier Subscription: Getting a relevant SIM Card first 3
Relying on a Suitable USB Mobile Phone or 3G Key 3
USB Supply & Connection 5
Operating-System Support & Configuration 5
Software L 10
Some SMS-related General Information 13
Issues & Planned Enhancements 13
Support ... 13
Ceylan-Mobile Inner Workings 13
A Few Information Pointers 14
About3GDevices 14
About Gammu 14
About SMS 14
Troubleshooting Telecom-level Issues 14
Please React! 14
EndingWord 15

Overview

A typical use-case is when one wants to send SMS from a gateway (server), for ex-
ample in order to perform home automation, possibly together with all kinds of fancy
personal services (event reminder, UPS notifications, etc.).

For that, in addition to Ceylan-Mobile and its software dependencies, one would
need here:

¢ an USB-connected 3G device (typically an older, dedicated phone or, more
preferably, a suitable key)

* a SIM card enabling the use of the 3G network of a telecom carrier of one’s
choice

* a proper operating-system support thereof (a GNU/Linux box, most probably)

All these points are detailed below.

An alternate, less satisfying solution' could be to use the services of a SMS provider
through a web gateway; one may look at sms_utils.erl for a basic example of it.

The solution presented here relies on the Gammu library for the actual control of
the 3G device, and on Ceylan-Seaplus to make it available to Erlang.

Securing the Prerequisites

Please read the full document prior to making operative choices, since iterations, tri-
als and errors will probably have to be performed (before, hopefully, succeeding ulti-
mately).

Carrier Subscription: Getting a relevant SIM Card first

A 3G device without a companion SIM card would not be of much use.

Finding a good mobile package is quite country-specific. For example French cus-
tomers might enjoy rather inexpensive, if not free, options.

As we want an automated use of this SIM card (through the 3G device selected in
the next section), one should ensure that, in the card’s configuration, the request for the
PIN code has been disabled.

This can be done by inserting the SIM card in a mobile phone, and, through the set-
tings, disabling once for all said verification. This may also be a good way of checking
whether the SIM card works properly before hacking around.

Relying on a Suitable USB Mobile Phone or 3G Key

Basically, one just has to insert the SIM card, connect the device to the computer and
start sending SMS to friends.

Well, no. Welcome to a surprising mess instead!

First of all, as we understand it, mobiles are far less appropriate than 3G keys for
this exercice (they are not well supported, they tend to enter various sleep modes), but
be reassured that your mileage may vary with keys as well.

!'Not nearly as fun: more constraints (ex: credit expiration), probably more expensive, and of course the
SMS sending system cannot be used to notify for example that your Internet connection was lost, possibly
cut off by burglars...

https://en.wikipedia.org/wiki/Uninterruptible_power_supply
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/sms_utils.erl
https://wammu.eu/gammu/
http://seaplus.esperide.org/
http://mobile.free.fr/fiche-forfait-2-euros.html

In order to select a proper device (phone or key), first of all one should look at the
Gammu Phone Database (which, despite its name, lists keys as well).

We tried to favour the acknowledged entries in this database, moreover the ones
with multiple success reports.

For the record, we selected (before the controversy) only Huawei chips (supposedly
becoming, or having been, for better or for worse, a de facto standard) of various quite
widespread offers, and bought 4 secondhand 3G keys of different models”, which we
named that way:

* K3G-1: ablack and orange generic model (no specific brand appar-
ently), labelled HSDPA, with a Huawei E169 chip

* K3G-2: white (with a green LED, invisible unless lit), from a former
operator, based on a Huawei E170

* K3G-3 : white, from another former operator, based on a Huawei
E172 (labelled as E1752); can host an additional MicroSD card

* K3G-4 : white, from same former operator as K3G-2, based on
Huawei E180 (firmware 11.104.16.01.00), with arotating USB
connection; can also host an additional MicroSD card

To anticipate a bit:

* we have been able to make good use of K3G—-2 (which became our "reference"
key, used operationally) and K3G-4 (kept as a spare key, should the previous
one fail)

* we have not been able to durably use K3G-1 and K3G—4 (notably: they were
regularly not responding anymore after a few, normal interactions)

So, from then on, we will mostly consider here the use of K3G-2.

Finally, one should ensure that one’s 3G device is not locked to a specific network
or carrier. In most cases the device will have to be unlocked, so that it can accept SIM
cards issued by any operator (and not just the one devices are generally bundled with).

We were told that our 4 keys were unlocked, yet none of them seemed to properly
work on Linux (blocking at various steps, like when fetching their IMEI) until we tried
to install them on a Windows box and also to unlock them.

Not sure which operation unblocked them, as most of the attempted operations
reportedly failed or could not be properly interpreted in terms of result. This online
calculator for Huawei chips seemed to work (giving a NCK unlocking code and another
one for the flash operation), even if it is difficult to assess whether the use of any actual
code really succeeded.

We were not so keen on installing third-party, untrusted software on said Windows
box (even installing the driver located on their ROM appearing as a mass storage is
somewhat unpleasant), but flashing tools are required whenever having to unlock.

For them, Sandboxie or similar may be used in order to isolate, at least to some
extent, the various software that one may try in one’s quest for a correctly-behaving 3G
key. At least for us, quite frequently (even without sandboxing) Windows was not even
able to detect that such keys were inserted.

2For a whopping expensive bill of 10 euros.

https://wammu.eu/phones/
http://www.deblokgsm.com/server/huaweicalc-us.php
http://www.deblokgsm.com/server/huaweicalc-us.php
https://www.sandboxie.com/

More generally, various problems might explain why a 3G key is misbehaving (i.e.
does not seem able to operate, at least not durably), including failed unlocking, buggy
firmware versions and alike, and other issues discussed at later steps.

Good luck to you!

USB Supply & Connection

Once one managed to correctly put the SIM card in the right format (normal, micro or
nano) in said device, a proper USB cable shall be used to interlink, say, the residential
server and the 3G phone, whereas a 3G key could be directly connected to a computer
port.

A problem might be that the device could end up being insufficiently powered (ex:
weaker USB port, longer USB cable). Some people use a separately-powered USB
hub, to compensate for computer USB ports that would not be powerful enough. We
never experienced that problem, though.

Operating-System Support & Configuration

That’s the main part. We prefer using GNU/Linux, typically Arch Linux, taken consis-
tently as a reference here.

Kernel Modules As always, maybe new kernel modules will have to be dynamically
loaded; so, should the kernel have been updated since last boot, reboot first, otherwise
the (newer) modules will not match the currently running, older kernel.

Before first inserting a 3G device, we advise to record the already loaded kernel
modules, in order to detect the additional ones that are needed by said device.

For example, as root:

$ lsmod > ~/lsmod-before.txt

Connect 3G device and wait a bit (ex: LED blinking)
$ 1lsmod > ~/lsmod-after.txt

$ diff ~/lsmod-before.txt ~/lsmod-after.txt

In our case, the opt ion and usb_wwan modules were loaded, so we ensured that,
from now then, they were automatically loaded at boot (to avoid that a later kernel up-

date block their loading), by creating a /etc/modules—-load.d/for-3g-keys.conf

file with following content (just one module per line):

option
usb_wwan

USB Identifiers & Mode Switches The connected key will then appear as a USB
device, with a USB ID in the form of vendor_id:product_id, which can be for
example be obtained thanks to 1susb.

For example, at connection, our K3G-1 key will appear as:

Bus 003 Device 096: ID 12d1:141b Huawei Technologies Co.

Ltd.

https://stackoverflow.com/questions/29365148/gammu-stops-receiving-sms-aftar-a-while
https://wiki.archlinux.org/index.php/USB_3G_Modem#Connection_halts_after_few_minutes_running
https://www.archlinux.org/

Unfortunately, this does not correspond to a (3G) modem, but to a mass storage:
most keys will be detected as such (ex: as CD-ROM players), as they comprise a built-
in ROM (if not an additional MicroSD slot) where typically the vendor (Windows-
only) drivers are located. These drivers, once installed, will switch the operating mode
of their key, from mass storage to modem.

Here such drivers are of no use, and what we want is to switch the keys to modems.

For that, as root, following package shall be installed first:

$ pacman -Sy usb_modeswitch

It should install a udev rule file (/usr/1lib/udev/rules.d/40-usb_modeswitch.rules)
suitable for most 3G devices (otherwise you will have to enrich it).
Then the key should be plugged again; the vendor identifier is not expected to
change, but the product identifier should, so that the key is now considered as a modem.
journatctl -xe should allow to check.
For example, once connected, our K3G-1 key is to spontaneously switch (almost
immediately) from the previous:

Bus 003 Device 096: ID 12dl:141b Huawei Technologies Co., Ltd.
to a newer:
Bus 003 Device 060: ID 12d1:1446 Huawei Technologies Co., Ltd. HSPA modem

Bye bye mass storage, hello modem!
This mode switch can also be done manually, like in:

$ sudo usb_modeswitch —--verbose -J -v 0x12dl -p 0x1446
1susb would then ultimately report, for K3G—-2:

Bus 002 Device 003: ID 12d1:1003 Huawei Technologies Co., Ltd. E220 HSDPA 1

Managing /dev/ttyUSB* entries Should the relevant kernel modules be available, at
least one entry shall appear as /dev/ttyUSB~* when a USB 3G device is connected
and correctly recognised by the system.
For example, /dev/ttyUSBO, /dev/ttyUSB1, /dev/ttyUSB2 and /dev/ttyUSB3
may appear, sometimes only after a few seconds. Only a subset of them will be useable.
A tests with Gammu will tell them apart.
So, first, that tool shall be installed.
One’s distribution should provide it, as it is fairly standard:

$ pacman gammu

It should notably provide the Gammu library (ex: in /usr/1ib64/1libGammu.so0.8.1.40.0)
and the various Gammu header (ex: the /usr/include/gammu/gammu/gammux . h).
With this package comes the /usr/bin/gammu executable (of course relying on
said library), which is useful to test one’s configuration.
The executable may read its test configuration from /et c/gammurc, whose con-
tent may be, for example in order to test whether /dev/ttyUSB1 (the tty we use for
K3G-2) is relevant:

[gammu]

device = /dev/ttyUSB1

connection = at

logfile = /var/log/gammu-ceylan.log
logformat = textalldate

To check whether one’s 3G device is supported by the system, one may use:
$ gammu —--identify

Note that each operation is bound to last for a few (around 3-4) seconds before
returning.
Hopefully one will not end up with following information returned:

Can not access SIM card.
Or even WOrse:
No response in specified timeout. Probably phone not connected.

but, after maybe some trials and errors (start by testing various /dev/ttyUSB=
devices and connection settings), with something like (IDs edited for obvious rea-

sons):
Device : /dev/ttyUSB1
Manufacturer : Huawei
Model : E17X (E17X)
Firmware :11.304.20.01.00
IMET 1 XXXXXXXXXXXXXXX
SIM IMSI I XXXXXXXXXXXXXXX

Congratulations, the operating system supports, at least to some extent, your de-
vice!
A problem will be afterwards that the numbers involved in the tty pseudofiles are
bound to change - based on, notably, the use of the other USB ports.
So a better approach will be to use udev in order to give them a stable name, such
as /dev/ttyUSB-my—-3G-key, thanks to a rule typically writtenin /et c/udev/rules.d/98-usb-my-3G-k
whose content would be:

SUBSYSTEM=="tty", ATTRS{idVendor}=="12d1", ATTRS{idProduct}=="1446", \
SYMLINK+="ttyUSB-my-3G-key"

Then one should run:
$ udevadm control —--reload-rules && udevadm trigger

One the key is inserted again, it should be available with its new, stable name.
It can be checked more in-depth:

$ udevadm info —--query=all —--name=ttyUSB-my-3G-key
/devices/pci0000:00/0000:00:14.0/usb2/2-3/2-3:1.1/ttyUSB1/tty/ttyUSB1
ttyUSB1

0

ttyUSB-my-3G-key

serial/by-path/pci-0000:00:14.0-usb-0:3:1.1-port0
serial/by-id/usb-HUAWEI_Technologies_HUAWEI_Mobile-if0l-port0

-1

:—\UJUJU)L_‘Z"U

One may ensure thanks to fuser that no component (Network Manager or alike)
took control of it:

$ fuser -va /dev/ttyUSB-my-3G-key
USER PID ACCESS COMMAND
/dev/ttyUSBL:

(as intended, no controller process in the way here)
To interact with such a /dev/ttyUSB~ file, the user (let’s name him sheldon)
must be in the uucp group; so, as root:

S gpasswd —-a sheldon uucp
And, as sheldon:
$ newgrp uucp

We re-use that group so that this non-privileged user can also write in the Gammu
log file we specified; as root:

$ touch /var/log/gammu-ceylan.log
$ chgrp uucp /var/log/gammu—-ceylan.log

This should be sufficient so that sheldon is able to send SMS, not involving
root anymore in the process.

Wrapping-up Telecom Configuration Now, with that user, is time for a bit of con-
figuration before testing.
One may use:

$ gammu getsecuritystatus

to ensure that no PIN code is required before using the 3G device (hence expecting
as answer: Nothing to enter.).
Various calls can be made in order to convince oneself that the key operate properly:

$ gammu battery
Battery level : 0 percent
Charge state : battery connected and is being

$ gammu getallsms
0 SMS parts in 0 SMS sequences

The SMSC number of the carrier having issued one’s SIM card must be set before
any actual SMS sending:

$ gammu setsmsc 1 "+33695000XYZ"

Should this operation fail, it may be a sign that the 3G device is still locked.
This can be checked:

charged

https://en.wikipedia.org/wiki/Short_Message_service_center

S gammu getsmsc
Location

Number

Default number
Format

Validity

1
"+33695000XYZ"
Text

Maximum time

Then a SMS can be sent, assuming TARGET_NUMBER has been set to some sen-
sible number (like one’s mobile), and root is used at first to overcome any permission

issue:

-text "Hello world!"

S gammu sendsms TEXT ${TARGET_NUMBER}
If you want break, press Ctrl+C...
Sending SMS 1/1....waiting for network answer..OK, message reference=50

As the SMSC has just been set previously, one should not get Failed to get
SMSC number from phone
This can be monitored:

$ gammu monitor 1

Press Ctrl+C to break...
Entering monitor mode...
Enabling info about incoming SMS No error.
SMS message received

[...]

We already have one pending,
SMS message received
Enabling info about incoming CB
Enabling info about calls

ignoring this one!

Security error. Maybe no PIN?

No error.

Enabling info about USSD No error.
SIM phonebook : 0 used, 250 free
Dialled numbers : 10 used, 0 free
Received numbers 0 used, 10 free
Missed numbers 0 used, 10 free
Own numbers : 1 used, 4 free
Phone phonebook : 0 used, 100 free

Battery level
Charge state

0 percent
battery connected and is being charged

Signal strength
Network level

-51 dBm
100 percent

SIM SMS status 9 used, 0 unread, 50 locations

Phone SMS status 0 used, 0 unread, 255 locations

Network state home network

Network 208 15 (XXX Mobile, France), LAC F8F, CID XYZ
Packet network state home network

Packet network 208 15 (XXX Mobile, France), LAC F8F, CID UVW
GPRS : attached

Location 4, folder "Inbox", SIM memory, Inbox folder

SMS message
SMSC number

"+33695000XYZ"

Sent : Sat Dec 22 21:22:14 2018 +0100

Coding : Default GSM alphabet (no compression)
Remote number HEE 9.0.00.0.00.8
Status : UnRead

[...]

Leaving monitor mode...

Then the same could be attempted with this time a non-privileged user (ex: the
previous sheldon one). If the Gammu sendsms command fails with "Can not
open specified file", probably that the permissions onto the log file whose
path is specified in the Gammu configuration file have not been appropriately updated
(see the uucp group above).

Once successful, one will be able to send SMS back and forth between the 3G
device and "normal" phones:

$ gammu getallsms

With this first support, one will be able to fight encodings (ex: for special charac-
ters), SMS parts (ex: for messages too large for a single SMS) and sequences. MMS
should provide a lot of fun too.

Currently, with Ceylan-Mobile one is able to fetch various information from the
device, and to send SMS (regular or multipart ones, with GSM 7bit encoding or with
UCS-2 one, of various SMS classes), knowing that all settings (except the message
itself and the recipient number) can be transparently managed by Ceylan-Mobile. See
this example as a first guideline.

Software

Ceylan-Mobile relies on Ceylan-Seaplus, which itself relies on Ceylan-Myriad.
All three of them rely on Erlang (for the user API) and on C (for the library driver),
which must therefore be both available.

Erlang Environment Erlang, version 22.1 or higher, is needed.

One may obtain it from many ways, including one’s distribution (ex: pacman
erlang), directly from its sources or possibly thanks to our install-erlang.sh script; a
simple use of it is:

$./install-erlang.sh
or:
$./install-erlang.sh --doc-install --generate-plt

One may execute ./install-erlang.sh —-help for more details about
how to configure it.

C Environment One may use a recent enough version of GCC (ex: pacman gcc).

10

https://github.com/Olivier-Boudeville/Ceylan-Mobile/blob/master/test/mobile_test.erl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus
https://github.com/Olivier-Boudeville/Ceylan-Myriad
http://erlang.org
http://www.erlang.org/
http://www.erlang.org/downloads
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/install-erlang.sh

Gammu Conventions The Gammu configuration file will be searched, on POSIX
systems, first as ~/ . gammurc, then as /etc/gammurc.

For debugging purposes, using the dummy driver is quite convenient.

So for example one could have following content for /etc/gammurc:

[gammu]

model = dummy

connection = none

device = /tmp/gammu-dummy-device

Create that directory (as the user to make use of Gammu) first:
$ mkdir /tmp/gammu-dummy-device

Otherwise you get: you don’t have the required permission.
It will populate this directory with data faking a real phone:

/tmp/gammu—-dummy-device
-—— alarm
—-—— calendar
-—— fs
| -— incoming
——— note
—-—— operations.log
-—— pbk
-—— DC
-—— MC
—-—— ME
-—— RC
SM

|
|
|
g w N

todo

Myriad, Seaplus and Mobile Once proper Erlang and C environments are available,
the Ceylan-Myriad repository should be cloned and built, before doing the same with
the Ceylan-Seaplus repository and then this Ceylan-Mobile repository, like in:

git clone https://github.com/Olivier—-Boudeville/Ceylan-Myriad myriad
cd myriad && make all && cd

git clone https://github.com/Olivier-Boudeville/Ceylan-Seaplus seaplus
cd seaplus && make all && cd

git clone https://github.com/Olivier-Boudeville/Ceylan-Mobile mobile
cd mobile && make all

vr Uy U U Uy

Then one will be able to enjoy using one’s mobile from Erlang.

11

https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Seaplus
https://github.com/Olivier-Boudeville/Ceylan-Mobile

Testing Ceylan-Mobile To test the current functional coverage, one may run mo-
bile_test.erl; from the root of the Ceylan—Mobile clone (once built, and assuming
here using the dummy Gammu driver - so that the test can be run even if having no 3G
device):

$ cd test
$ make mobile-test

Running unitary test mobile_run (second form) from mobile_test mobil

——> Testing module mobile_test.

Testing the Ceylan-Mobile service.
Back-end information: {gammu, {1,40,0}}.
Device manufacturer: Gammu.

Device model: Dummy.

Firmware information: revision is ’"1.40.0’, date is ’20150101" and revisic

IMEI code: ”7999999999999999'.

Hardware information: ’'FOO DUMMY BAR’.

IMSI code: 7994299429942994".

Signal quality: signal strength is 42 dBm (42%), error rate is 0%.
[...]

One may also have a look at the resulting Seaplus log (ex: seaplus—driver.27168.10g;
timestamps removed for terseness):

debug] Starting Seaplus session...

debug] Starting the Seaplus C driver, with a buffer of 32768 bytes.
trace] At start-up: currently allocated blocks: 0; length of freelist:
trace] Driver started.

debug] Starting Gammu.

debug] Executing get_backend_information/O0.

]
]
]
]
]
]
debug] Executing get_device_manufacturer/0.
]
]
]
]
]
]

[

[

[

[

[

[

[

[debug] Executing get_device_model/0.

[debug] Executing get_firmware_information/O0.
[debug] Executing get_imei_code/O0.

[debug] Executing get_hardware_information/0.
[debug] Executing get_imsi_code/O0.

[debug] Executing get_signal_quality/O0.

[...]

[debug] Stopping Gammu.

[debug] Stopping the Seaplus C driver.
[trace] At stop: currently allocated blocks: 0; length of freelist: 0.
[debug] Stopping Seaplus session.

12

0.

https://github.com/Olivier-Boudeville/Ceylan-Mobile/blob/master/test/mobile_test.erl
https://github.com/Olivier-Boudeville/Ceylan-Mobile/blob/master/test/mobile_test.erl

Some SMS-related General Information

The text to be sent as a SMS must be somehow encoded in messages.

Either the default, very limited alphabet of 7bit encoding can be used, and then a
single, regular SMS will contain up to 160 characters (knowing that the | "€ {} []\
characters will have to be escaped and thus will count for 2 characters with this encod-
ing), or at least one character does not belong to that alphabet and then the Unicode
UCS-2 encoding will have to be used, and then only 70 characters will fit in that SMS.

Should the message be longer than what a single SMS can carry for the relevant
encoding, a multi-part SMS shall be used: the text will be split into as many SMS
as needed (at least, up to 255 of them, each with a reduced per-SMS payload due to
an UDH header being needed; with the 7bit encoding: 153 characters per SMS; with
UCS-2: 67 of them), and they will be sent as separate SMS. The receiver is expected
to decode these headers, reassemble the messages correctly and present them as if they
were a single, longer SMS.

Ceylan-Mobile automatically detects the relevant encoding and type (single/multiple)
parts needed; the user just has to specify the text message that shall be sent.

See also a Free Online SMS Length Calculator.

Issues & Planned Enhancements

The coverage of the Gammu APIs could be increased (not specifically tricky, just time-
consuming).
Notably:

* a check whether phone needs to enter some PIN could be added

* asupport to accept/deny the receiving of SMS could be done based on the SMSC
and/or mobile number of the sender

* auto-hang up should a call be made to the 3G device (rather than letting the caller
leave a message in the voice mail, if any)

SMS delivery reports could be requested and checked.

Support

Bugs, questions, remarks, patches, requests for enhancements, etc. are to be sent
through the project interface, or directly at the email address mentioned at the be-
ginning of this document.

Ceylan-Mobile Inner Workings
Mobile relies on:
¢ libGammu (GPLv2), for the actual mobile phone support

* Ceylan-Seaplus (LGPLv3), for the integration of the previous library to Erlang

Ceylan-Mobile links directly to (lower-level) Gammu library services, instead of
using the Gammu SMSD daemon, as it provides similar features, such as driving the
mobile-side operations and polling it for incoming events.

13

https://en.wikipedia.org/wiki/GSM_03.38#GSM_7-bit_default_alphabet_and_extension_table_of_3GPP_TS_23.038_/_GSM_03.38
https://en.wikipedia.org/wiki/GSM_03.38#UCS-2_Encoding
https://messente.com/documentation/tools/sms-length-calculator
https://github.com/Olivier-Boudeville/Ceylan-Mobile
https://wammu.eu/libgammu/
https://github.com/Olivier-Boudeville/Ceylan-Seaplus

Ceylan-Mobile respects the way Gammu searches for, and reads, its configuration
file (no change needed, the same configuration can be used on the command-line and
with Ceylan-Mobile).

Internally, Gammu uses state machines.

Not specifically used/supported: WAP, FM stations, GPRS access points, MMS,
SyncML, phonebooks, calendars, alarms, TO-DO lists, notes, profiles, chats, voice
mailboxes, vCards, security (PIN, PIN2, PUK, PUK2), ringtones, JAD files, voice
call management, cell broadcast, USSD, callbacks, backups, etc.; inspiration could be
found in gammu/smsd/core.c (ex: SMSD_ReadDeleteSMS/1).

Please feel free to enrich Ceylan-Mobile!

A source of inspiration has also been python-gammu.

A Few Information Pointers

About 3G Devices
¢ USB 3G Modem, by Arch Linux
* USB_ModeSwitch, by Gentoo Linux
¢ About Huawei E173D (and Linux)

* in French: with a Raspberry Pi

About Gammu
¢ libGammu C API

e dummy driver

About SMS

o IMSI: identifier of a SIM card, i.e. a 64-bit field designating a user (International
Mobile Subscriber Identity)

* SMSC: SMS operator gateway (Short Message Service Center)
» UDH: optional binary SMS header (User Data Header)
* SMS class

Troubleshooting Telecom-level Issues

Best is to test various keys on various USB ports of various computers running various
operating systems, possibly with various SIM cards. Ultimately some combination
may work.

On GNU/Linux, being root and monitoring the system and Gammu logs (and/or
using the ——debug-file Gammu command-line option) should certainly help.

Please React!

If you have information more detailed or more recent than those presented in this doc-
ument, if you noticed errors, neglects or points insufficiently discussed, drop us a line!
(for that, follow the Support guidelines).

14

https://github.com/gammu/python-gammu/
https://wiki.archlinux.org/index.php/USB_3G_Modem
https://wiki.gentoo.org/wiki/USB_ModeSwitch
https://metodiew.com/huawei-e173s-and-ubuntu/
http://blogmotion.fr/diy/tutoriel-gammu-cle-3g-dongle-16409
https://wammu.eu/docs/manual/c/api.html
https://wammu.eu/docs/manual/testing/dummy-driver.html
https://en.wikipedia.org/wiki/International_mobile_subscriber_identity
https://en.wikipedia.org/wiki/Short_Message_service_center
https://en.wikipedia.org/wiki/User_Data_Header
https://en.wikipedia.org/wiki/Data_Coding_Scheme#Message_Classes

Ending Word

Have fun with Mobile - but do not spam people!

QIS

15

	Mobile: Controlling Mobile Phones and 3G Keys from Erlang
	Table of Contents
	Overview
	Securing the Prerequisites
	Carrier Subscription: Getting a relevant SIM Card first
	Relying on a Suitable USB Mobile Phone or 3G Key
	USB Supply & Connection
	Operating-System Support & Configuration
	Software

	Some SMS-related General Information
	Issues & Planned Enhancements
	Support
	Ceylan-Mobile Inner Workings
	A Few Information Pointers
	About 3G Devices
	About Gammu
	About SMS

	Troubleshooting Telecom-level Issues
	Please React!
	Ending Word

