Wrapper for Object-Oriented Programming in
Erlang

WOOPFPER

Organisation: Copyright (C) 2008-2025 Olivier Boudeville
Contact: about (dash) wooper (at) esperide (dot) com
Creation date: Sunday, August 17, 2008

Lastly updated: Saturday, April 19, 2025

Version: 2.0.31

Status: Stable

Dedication: Users and maintainers of the WOOPER layer.

Abstract: The role of the WOOPER layer is to provide free software
object-oriented facilities to the Erlang language.
The latest version of this documentation is to be found at the official WOOPER
website (http://wooper.esperide.org).
This documentation is also mirrored here.

http://wooper.esperide.org
http://wooper.esperide.org
https://olivier-boudeville.github.io/Ceylan-WOOPER/

Table of Contents

Overview

Understanding WOOPER in Two Steps
Motivations & Purpose
The WOOPER Mode of Operation in a Nutshell
Example

Why Adding Object-Oriented Capabilities To Erlang?

How to Use WOOPER: Detailed Description & Concept Map-
pings
Classes . . . v v v v e e e
Classes & Names
Class Description o oo
Inheritance & Superclasses. 0oL
Instances
Instance Mappingo oo
Instance State
Methods e
Method Declaration
Method Invocation,
Method Name
Method Parameters
Two Kinds of Member Methods
Request Methods
Oneway Methods
Method Results
Execution Success: {wooper_result,ActualResult}
Execution Failures
Method Definition
For Requests
For Oneways
Usefulness Of the Method Terminators
Self-Invocation: Calling a Method From the Instance Itself. . . .
Inheritance-based Self-Invocation
Self-Invocation of an Explicitly-Designated Method
Static Methods
State Management L oL
Principles
State Implementation Details
Instance Attributes L.
Managing the State of an Instance
Modifying State oo
Reading Stateo o
Read-Modify-Write Operations
Multiple Inheritance & Polymorphism
The General Case
The Special Case of Diamond-Shaped Inheritance

26

Principle 41

Modelling & Implementation Choices 42

Interfaces: to be able to favour Composition over Inheritance . . 43
Life-Cycle o o 45
Instance Creation: new/new_link and construct 45
Role of a new /construct Pair 45

The Various Ways of Creating an Instance. 46

Some Examples of Instance Creation 48

Definition of the construct Operator 48

Instance Deletiono oL 50
Automatic Chaining Of Destructors 50
Asynchronous Destruction: using destruct/1. 50
Synchronous Destruction: using synchronous_delete/1 . 51

Passive Instances Lo Lo 52
Serialisation Lo 53
Hot Code Update 53
Miscellaneous Technical Points 55
Helper vs Static. 55
Calling a Method Clause from Another 55
Integrated Call APIs 57
Single Calls 57
Multi-Calls e 57
Methods Not Returning Anything of Interest 58
Methods Not Returning 58
Exception-Throwing Methods 58
delete_any_instance_referenced_in/2 60
EXIT Signals / Messages oo it i 60
DOWN Messages for Process Monitors 61
Node Monitors 61
A bit of Introspectiono oL 61
Developer Guidelines, 62
General Guidelines oL 62
OTP Guidelines 62
WOOPER APT o 64
Class Developer Cheat Sheet 64
Source Editorso 65
Similarity With Other Languages 65
WOOPER limitations 65
WOOPER Example 67
Class implementations 67
Tests . . . o o e 67
Good Practices 69
Supported Platforms 70

Troubleshooting

Debug Mode

"No attribute declaration found" whereas a class_attributes define
eXIStS . . e e e e e
Compilation Error Pointing to wooper_for_classes.hrl
General Case e
Compilation Warnings,
Runtime Errors
Mismatches In Method Call

Error With Exit Value: {undef, [{map_hashtable,new,[..]}..

Current Stable Version & Download
Prerequisites L
Using Cutting-Edge GIT
Using OTP-Related Build/Runtime Conventions
Using Rebar3
Using Hex o o
Testing WOOPER

Version History & Changes
Version 2.0 [current stable] L Lo
Version 1.X
Version 1.0
Version 0.4 e
Version 0.3 e e
Version 0.2
Version 0.1

WOOPER Inner Workings
General Principles oo
Understanding Compilation
Understanding the Mode of Operation of a WOOPER Instance .
Method Virtual Table
General Principle oo
Attribute Table

Issues & Planned Enhancements

Licence

Sources, Inspirations & Alternate Solutions
Support

Please React!

Ending Word

71

73
73
73
73
74
(0]
(0]

77
i
7
78
78
78
79
79

80
80
80
80
80
80
81

82

83

84

85

85

85

72

Overview

WOOPER, which stands for Wrapper for Object-Oriented Programming in Er-
lang, is a free software lightweight layer on top of the Erlang language that
provides constructs dedicated to Object-Oriented Programming (OOP).

WOOPER is a rather autonomous part of the Ceylan project (yet it uses
Myriad and is used by Traces). WOOPER can be readily built and run on most
Unices (including of course GNU/Linux) and on Windows.

The project repository is located here.

At least a basic knowledge of Erlang is expected in order to use WOOPER.

Seasoned WOOPER users may directly bookmark this always useful cheat
sheet.

Understanding WOOPER in Two Steps

Here is a class definition, and here is an example of code using it. That’s it!
Now, let’s discuss these subjects a bit more in-depth.

Motivations & Purpose

Some problems may almost only be tackled efficiently thanks to an object-
oriented modelling.

The set of code and conventions proposed here allows to benefit from all
the main OOP features (including polymorphism, life cycle management, state
management, passive or active instances, and multiple inheritance) directly from
Erlang (which natively does not rely on the OOP paradigm), so that - in the
cases where it makes sense - an object-oriented approach at the implementation
level can be easily achieved.

The WOOPER Mode of Operation in a Nutshell

The WOOPER OOP concepts translate into Erlang constructs according to the
following mapping:

WOOPER | Corresponding mapping to Erlang
base con-
cept

class defini- | module (typically compiled in a .beam file)
tion

active in- | process
stance

active in- | process identifier (PID)
stance
reference

passive opaque term
instance

...continued on next page

http://erlang.org
http://en.wikipedia.org/wiki/Object-oriented_programming
https://github.com/Olivier-Boudeville/Ceylan
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat_test.erl

WOOPER

Corresponding mapping to Erlang

base con-

cept

new opera- | WOOPER-provided functions, making use of user-defined
tors construct/N functions (a.k.a. the constructors)

delete opera-
tor

WOOPER-provided function, making use of any user-defined
destruct/1 (a.k.a. the destructor)

member module function that respects some conventions (re-
method quest /oneway /static method)

definition

member sending of an appropriate inter-process message

method

invocation

method class-specific virtual table taking into account inheritance
look-up transparently

instance instance-specific datastructure storing its attributes, and kept
state by the instance-specific WOOPER tail-recursive infinite loop

instance at-
tributes

key/value pairs stored in the instance state

class (static)
method

module function that respects some conventions

In practice, developing a class with WOOPER mostly involves including the
wooper.hrl header file and respecting the WOOPER conventions detailed below.

Example

Here is a simple example of how a WOOPER class can be defined and used.

It shows new/delete operators, method calling (both request and oneway),
and inheritance.
A cat is here a viviparous mammal, as defined below (this is a variation of

our more complete class Cat.erl example):

-module(class_Cat) .

% Optional:
-define(class_description, "Models a domestic cat").

% Determines what are the direct mother classes of this class

-define(superclasses, [class_Mammal, class_ViviparousBeing] R

% Declaration of class-specific attributes:
% (optional, yet recommended for clarity)
-define(class_attributes, [
{meow_style,style(),const,"the kind of meow to expect"},
{whisker_color,"the color of this cat’s whiskers"}]).

(if any):

% Allows to define WOOPER base variables and methods for that class:

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat.erl

-include("wooper.hrl").

% No need to export constructors, destructor or methods.
% Type specifications remain optional (yet are recommended) .

% Constructs a new Cat.

construct (State,Age,Gender ,FurColor,WhiskerColor) ->
% First the direct mother classes:
MammalState = class_Mammal:construct(State,Age,Gender,FurColor),
ViviparousMammalState = class_ViviparousBeing:construct(MammalState),
% Then the class-specific attributes; returns an updated state:
setAttribute(ViviparousMammalState,whisker_color,WhiskerColor).

destruct(State) ->
io:format("Deleting cat “w! (overridden destructor)™n", [self()]),
State.

% Member methods.

% A cat-specific request, supposing the developer missed the fact

% that it is a const one (no problem):

getWhiskerColor(State)->
wooper:return_state_result(State,?getAttr(whisker_color)).

% A (non-const) oneway, with a spec:
-spec setWhiskerColor(wooper:state(),foo:color()) -> oneway_return().
setWhiskerColor (State,NewColor)->
NewState = setAttribute(State, whisker_color, NewColor),
wooper:return_state(NewState) .

% Overrides any request method defined in the Mammal class:
% (const request)
canEat (State,soup) ->

wooper:const_return_result(true);

canEat (State,croquette) ->
wooper:const_return_result(true);

canEat (State,meat) ->
wooper:const_return_result(true);

canEat (State,_0OtherFood) ->
wooper:const_return_result(false).

% Static method:
get_default_whisker_color() ->
wooper :return_static(white).

Straightforward, isn’t it? We will discuss it in-depth, though.
To test this class (provided that GNU make and the latest stable version of

Erlang are available in one’s environment, see Prerequisites for more informa-
tion), one can easily install Ceylan-WOOPER, which depends on Ceylan-Myriad,
hence is to be installed first:

$ git clone https://github.com/0livier-Boudeville/Ceylan-Myriad.git myriad
$ cd myriad && make all && cd ..

$ git clone https://github.com/0livier-Boudeville/Ceylan-WOOPER.git wooper
$ cd wooper && make all

(for OTP compliance, using short names, such as myriad or wooper, for
clones rather than long ones, such as Ceylan-Myriad or Ceylan-WOOPER, is
recommended)

Running the cat-related example just then boils down to:

$ cd examples && make class_Cat_run

In the examples directory, the test defined in class Cat_test.erl should run
against the class defined in class _Cat.erl, and no error should be detected:

Running unitary test class_Cat_run (second form)

--> Testing module class_Cat_test.

[..]

Deleting cat <0.80.0>! (overridden destructor)

Deleting mammal <0.80.0>! (overridden destructor)

Actual class from destructor: class_Cat.

Deleting mammal <0.82.0>! (overridden destructor)

This cat could be created and be synchronously deleted, as expected.
--> Successful end of test.

(test finished, interpreter halted)

That’s it!
Now, more in-depth explanations.

http://myriad.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Cat.erl

Why Adding Object-Oriented Capabilities To Er-
lang?

Although applying blindly an OOP approach while using languages based on
other paradigms (Erlang ones are functional and concurrent; the language is
not specifically targeting OOP) is a common mistake, there are some problems
that may be deemed inherently "object-oriented", i.e. that cannot be effectively
modelled without encapsulated abstractions sharing behaviours.

Examples of this kind of systems are multi-agent simulations. If they often
need massive concurrency, robustness, distribution, etc. (Erlang is particularly
suitable for that), the various types of agents have also often to rely on similar
kinds of states and behaviours, while still being able to be further specialised
on a per-type basis.

The example mentioned through the current guide is an illustration! of the
interacting lives of numerous animals of various species. Obviously, they have
to share behaviours (e.g. all ovoviviparous beings may lay eggs, all creatures
can live and die, all have an age, etc.), which cannot be mapped easily (read:
automatically) to Erlang concepts without adding some generic constructs.

WOOPER, which stands for Wrapper for OOP in Erlang, is a lightweight
yet effective (performance-wise, but also regarding the user-side developing ef-
forts) means of making these constructs available, notably in terms of state
management and multiple inheritance.

The same programs could certainly be implemented without such OOP con-
structs, but at the expense of way too much manually-crafted, specific (per-
class) code. This process would be tedious, error-prone, and most often the
result could hardly be maintained.

1This example is not a simulation, it is just a multi-agent system. For real, massive,
discrete-time simulations of complex systems in Erlang (using WOOPER), one may refer to
Sim-Diasca instead (a free software discrete-time simulation engine).

https://github.com/Olivier-Boudeville-EDF/Sim-Diasca

How to Use WOOPER: Detailed Description &
Concept Mappings

Classes .+« v v v v v v i e e e e e e e e e e e e e e e e e e e 10
Classes & Names 10
Class Description 11
Inheritance & Superclasses 11

Instances i L e e e e e 12
Instance Mapping 12
Instance State oL 12

Methods o v v i i it ittt e e e e e e e 13
Method Declaration 14
Method Invocation oL 14
Method Name 15
Method Parameters 15
Two Kinds of Member Methods 16
Method Results L. 17
Method Definition 20
Self-Invocation: Calling a Method From the Instance Itself . 26
Static Methods oL 29

State Management 0000 31
Principles oo 31
State Implementation Details 31
Managing the State of an Instance 34

Multiple Inheritance & Polymorphism 41
The General Case 41
The Special Case of Diamond-Shaped Inheritance 41
Interfaces: to be able to favour Composition over Inheritance 43

Life-Cycle o o i i i i ittt ittt e e e e 45
Instance Creation: new/new_link and construct 45
Instance Deletion oL, 50

Passive Instances 0000000 52

Serialisation0 000 0o e 53

Hot Code Update 53

Classes

Classes & Names

A class is a blueprint to create objects, a common scheme describing the state
and behaviour of its instances, i.e. the attributes and methods that all objects
created from that class shall support.

With WOOPER, each class has a unique name, such as class_Cat.

To allow for encapsulation, a WOOPER class is mapped to an Erlang
module, whose name is by convention made from the class_ prefix followed

10

by the class name, in the so-called CamelCase: all words are spelled in lower-
case except their first letter, and there are no separators between words, like in:
ThisIsAnExample.

So a class modeling, for example, a cat should translate into an Erlang mod-
ule named class_Cat, thus in a file named class_Cat.erl. At the top of this
file, the corresponding module would be therefore declared with: -module(class_Cat)..

Similarly, a pink flamingo class could be declared as class_PinkFlamingo, in
class_PinkFlamingo.erl, which would include a -module (class_PinkFlamingo) .
declaration.

Note that, unless specifically ambiguous, for the sake of brevity classes are
often referred to by their name without their class_ prefix.

For example PinkFlamingo can be understood as a shorthand for the actual
classname, class_PinkFlamingo.

Class Description

A class should not be implemented without adding at least a short description

of it. Rather than describing it through a mere in-code comment (hence only ad-
dressed to the class maintainer), a better approach is to used the class_description
define, like in:

-define(class_description,"Class in charge of implementing the "
"Foobar service.").

Doing so allows that information to be available to humans and tools alike?.

Inheritance & Superclasses

A WOOPER class can inherit from other classes, in which case the state and
behaviour defined in the mother classes will be readily available to this child
class.

Being in a multiple inheritance context, a given class can have any number
([0..n]) of direct mother classes, which themselves may have their mother
classes, and so on. This is to lead to a class hierarchy that forms a direct,
acyclic graph.

The direct mother classes (and only them) are to be declared in WOOPER
thanks to the superclasses define. For example, a class with no mother class
should specify, once having declared its module:

-define(superclasses, []).

In this particular case, with no mother class to be declared, this superclasses
define could be omitted as a whole (yet this would be probably less obvious to
the reader).

As for our cat, this superb animal could be modelled both as a mammal (itself
a specialised creature) and a viviparous being®. Hence its direct inheritance
could be defined as:

2More generally, over time we tend to see any remaining comment as a potential candidate
to "metadata promotion". This way, the corresponding information can be used in multiple
contexts (e.g. when generating documentation from code).

11

http://en.wikipedia.org/wiki/CamelCase

-define(superclasses, [class_Mammal,class_ViviparousBeing]).

The superclasses (direct mother classes) of a given class can be known

thanks to its get_superclasses/0 static method* (automatically defined by
WOOPER):

> class_Cat:get_superclasses().
[class_Mammal,class_ViviparousBeing]

Instances
Instance Mapping

With WOOPER, which focuses on multi-agent systems, all active instances
of a class are mapped to Erlang processes (one WOOPER instance is exactly
one Erlang process).

They are therefore, in UML parlance, active objects (each has its own thread
of execution, they may apparently "live" simultaneously”).

Such an instance process simply loops over its state forever, waiting for
incoming method calls and processing them one after the other.

Instance State

Another common OOP need is to rely on state management and encapsula-
tion: each instance should be stateful, have its state fully private, and be able
to inherit automatically the data members defined by its mother classes.

In WOOPER, this is obtained thanks to a per-instance associative table,
whose keys are the names of attributes and whose values are the attribute
values. This will be detailed in the state management section.

3Neither of them is a subset of the other, these are mostly unrelated concepts, at least
in the context of that example! (e.g. a platypus is a mammal, but not a viviparous being,
right?).

4Note that, to anticipate a bit, a static method (i.e. a class method that does not apply
to any specific instance of it) of a class X is nothing more than an Erlang function, exported
by WOOPER from the corresponding class_X module and which would return its result
R as: wooper:return_static(R). So the corresponding type specification would be -spec
get_superclasses() -> static_return([wooper:classname()]). here.

5For some uses, such a concurrent feature (with active instances) may not be needed, in
which case one may prefer dealing with purely passive instances (implemented as mere Erlang
terms instead of Erlang processes).

To anticipate a bit, instead of using new/N (returning the PID of a new process instance
looping over its state), one may rely on new_passive/N, returning to the caller process an
opaque term corresponding to the initial state of a new passive instance, a term that can be
then stored and interacted upon at will. See the passive instance section for more details.
Most of this document concentrates on active instances, so, unless specified otherwise, just
mentioning instance by itself refers to an active one.

12

Methods
They can be either:

e member methods: they applies to a specific instance (of a given class),
like in: MyCatPid ! declareBirthday

e or static methods: they are general to a class, not targeting specifically
an instance of it, like in: class_Cat:get_default_mew_duration()

Unless specified otherwise, just mentioning method by itself refers to a mem-
ber method. Static methods are discussed in their specific subsection (see Static
Methods).

Member methods can be publicly called by any process (be it WOOPER-
based or not) - provided of course it knows the PID of that instance - whether
locally or remotely (i.e. on other networked computers, like with RMI or with
CORBA, or directly from the same Erlang node), distribution (and parallelism)
being seamlessly managed thanks to Erlang.

Member methods (either inherited or defined directly in the class) are mapped
to specific Erlang functions that are triggered by Erlang messages.

For example, our cat class may define, among others, following member
methods (actual arities to be discussed later):

e canFat, taking one parameter specifying the type of food, and returning
whether the corresponding cat can eat that kind of food; here the imple-
mentation should be cat-specific (i.e. specific to cats and also, possibly,
specific to this very single cat), whereas the method signature shall be
shared by all beings

e getWhiskersColor, taking no parameter, returning the color of its whiskers;
this is indeed a purely cat-specific method, and different cats may have
different whisker colors; as this method, like the previous one, returns a
result to the caller, it is a request method

e declareBirthday, incrementing the age of our cat, not taking any pa-
rameter nor returning anything; it will be therefore be implemented as a
oneway method (i.e. not returning any result to the caller, hence not even
needing to know it), whose call is only interesting for its effect on the state
of this cat: here, making it one year older

e setWhiskerColor, assigning the specified color to the whiskers of that cat
instance, not returning anything (another oneway method, then)

Declaring a birthday is not cat-specific, nor mammal-specific: we can con-
sider it being creature-specific. Cat instances should then inherit this method,
preferably indirectly from the class_Creature class, in all cases without having
to specify anything, since the superclasses define already implies it (implying
one time for all that cats are creatures and thus, unless specified otherwise, are
and behave as such). Of course this inherited method may be overridden at will
anywhere in the class hierarchy.

We will discuss the definition of these methods later, but for the moment
let’s determine their signatures and declarations, and how we are expected to
call them.

13

Method Declaration

All cat-specific methods (member or static ones) are to be defined in the context
of class_Cat (defined, as mentioned, in class_Cat.erl). Defining a method
automatically declares it, so no method should be explicitly exported (knowing
WOOPER is to take care of it).

The arity of member methods should be equal to the number of param-
eters they should be called with, plus one that is automatically managed by
WOOPER and that corresponds to the (strictly private, never exported or sent
to anyone) state of that instance.

This State variable defined by WOOPER can be somehow compared to
the self parameter of Python, or to the this hidden pointer of C++. That
state is automatically kept by WOOPER instances in their main loop, and
automatically prepended, as first element, to the parameters of incoming method
calls.

Note

To respect the principle of least astonishment, WOOPER demands that
this first parameter is named exactly State (doing otherwise will result
in a compile-time WOOPER error being issued).

Method Invocation

Let’s suppose that the MyCat variable designates an (active) instance of class_Cat.
Then this MyCat reference is actually just the PID of the Erlang process hosting
this instance; so it may be named MyCatPid instead for additional clarity.

All member methods (regardless of whether they are defined directly by the
actual class or inherited) are to be called from outside this class thanks to a
properly formatted Erlang message, sent to the targeted instance via its PID.

When the method is expected to return a result (i.e. when it is a request),
the caller must specify in the corresponding message its own PID, so that the
instance knows to whom the result should be sent.

Oneways, as for them, are to be triggered with no caller information®, since
no answer is to be sent back.

Therefore the self () parameter in the call tuples for requests below corre-
sponds to the PID of the caller, while MyCat is bound to the PID of the target
imstance.

The three methods previously discussed would indeed be called that way:

% Calling the canEat request of our cat instance:
MyCat ! {canEat,soup,self()},

receive
{wooper_result,true} ->
io:format ("This cat likes soup!!!");

{wooper_result,false} ->
io:format("This cat does not seem omnivorous.")
end,

6Should the caller PID be nevertheless of use for a given oneway (this may happen), this
information shall be listed among its expected parameters.

14

% A parameter-less request:
MyCat ! {getWhiskersColor,[],self()},
receive
{wooper_result,white} ->
io:format ("This cat has normal whiskers.");

{wooper_result,blue} ->
io:format("What a weird cat...")
end,

% A parameter-less oneway:
MyCat ! declareBirthday.

Method Name

Methods are designated by their name (as an atom), i.e. the one specified when
defining them (e.g. canEat).
We recommend that their name is spelled in CamelCase and remains short
and descriptive, and start with a verb, like in: getColor, computeSum, registerDefaultSettings,
etc.
Some method names are reserved for WOOPER; notably no user-defined
method should have its name prefixed with wooper or with onWOOPER.
The list of the other reserved names (that shall thus not be defined by a
class developer) includes:

e get_classname and get_superclasses
e executeRequest and executeRequestAs, executeConstRequest and executeConstRequestAs
e executeOneway and executeOnewayAs, executeConstOneway and executeConstOnewayAs

e new and other related construction operators (new_link, synchronous_new,
etc.; see below)

e delete_any_instance_referenced_in, delete_synchronously_any_instance_referenced_in,
delete_synchronously_instances

They are reserved for all arities.
The method name is always the first information given when calling it (typ-
ically in the method call tuple).

Method Parameters

All methods are free to change the state of their instance and possibly to trigger
any side-effect (e.g. sending a message, writing a file, kidnapping Santa Claus,
etc.).

As detailed below, there are two kinds of member methods:

e requests methods: they shall return a result to the caller (obviously they
need to know it, i.e. the caller has to specify its PID)

15

e oneway methods: no specific result are expected from them (hence no
caller PID is to be specified)

Both can take any number of parameters, including none. As always, the
marshalling of these parameters and, if relevant, of any returned value is per-
formed automatically by Erlang.

Parameters are to be specified in a (possibly empty) list, as second element
of the call tuple, like in: {getWhiskersColor, [],self()}.

If only a single, non-list, parameter is needed, the list can be omitted, and
the parameter can be directly specified. So Alfred ! {setAge,31}. works
just as well as Alfred ! {setAge,[31]}..

Note

This cannot apply if the unique parameter is a list, as this would be
ambiguous.

For example: Foods=[meat,soup,croquette], MyCat
! {setFavouriteFoods,Foods} would result in a
call to setFavouriteFoods/4, ie. a call to
setFavouriteFoods (State,meat,soup,croquette), whereas the
intent of the programmer is probably to call a setFavouriteFoods/2
method like setFavouriteFoods(State,Foods) when
is_list(Foods) -> [..] instead.

The proper call would then be MyCat !
{setFavouriteFoods, [Foods]}, i.e. the parameter list should
be used, and it would then contain only one element, the food list,
whose content would therefore be doubly enclosed.

Note also that, of course, strings are lists. So Joe !
{setName, "Armstrong"}. is likely mnot the call you are
looking for. Most probably you should prefer: Joe !
{setName, ["Armstrong"]}..

Two Kinds of Member Methods

Request Methods A request is a member method that returns a result to
the caller.

For an instance to be able to send an answer to a request triggered by a
caller, of course that instance needs to know the caller PID.

Therefore requests have to specify, as the third element of the call tuple, an
additional information: the PID to which the answer should be sent, which is
almost always the caller (hence the self () in the actual calls).

So these three potential information (request name, parameters, reference of
the sender - i.e. an atom, usually a list, and a PID) are gathered in a triplet (a
3-tuple) sent as a message: {request_name, [Argl,Arg2,..], self()}.

If only one parameter is to be sent, and if that parameter is not a list, then
this can become {request_name, Arg, self()}.

For example:

MyCat ! {getAge,[],self()}.

or:

16

Douglas ! {askQuestionWithHint, [{meaning of,"Life"},{maybe,42}], self()}.
or:
MyCalculator ! {sum, [[1,2,4]],self()}.

The actual result R, as determined by the method, is sent back as an Er-
lang message, which is a {wooper_result,R} pair, to help the caller pattern-
matching the WOOPER messages in its mailbox.

receive should then be used by the caller to retrieve the request result, like
in the case of this example of a 2D point instance:

MyPoint ! {getCoordinates,[],self()},
receive
{wooper_result, [X,Y]} ->
[..]
end,

[..]

Oneway Methods A oneway is a member method that does not return a
result to the caller.
When calling oneway methods, the caller does not have to specify its PID,
as no result is expected to be returned back to it.
If ever the caller sends by mistake its PID nevertheless, a warning is sent back
to it, the atom wooper_method_returns_void, instead of {wooper_result,Result}.
The proper way of calling a oneway method is to send to it an Erlang message
that is:

e cither a pair, i.e. a 2-element tuple (therefore with no PID specified):
{oneway_name, [Argl,Arg2,..]} or {oneway_name,Arg} if Arg is not
a list; for example: MyPoint ! {setCoordinates, [14,6]} or MyCat !
{setAge,5}

e or, if the oneway does not take any parameter, just the atom oneway_name.
For example: MyCat ! declareBirthday

No return should be expected (the called instance does not even know the
PID of the caller), so no receive should be attempted on the caller side, unless
wanting to wait until the end of time.

Due to the nature of oneways, if an error occurs instance-side during the
call, the caller will never be notified of it.

However, to help the debugging, an error message is then logged (using
error_logger:error_msg) and the actual error message, the one that would
be sent back to the caller if the method was a request, is given to erlang:exit
instead.

Method Results

Execution Success: {wooper_result,ActualResult} If the execution of a
method succeeded, and if the method is a request, then {wooper_result,ActualResult}

17

will be sent back to the caller (precisely: to the process whose PID was specified
in the call triplet).
Otherwise one of the following error messages will be emitted”.

Execution Failures When the execution of a method fails, three main error
results can be output (as a message for requests, as a log for oneways).
A summary could be:

Error Result Interpretation Likely guilty

wooper_method_not_found No such method exists in | Caller
the target class.

wooper_method_failed Method triggered a run- | Called instance
time error (it has a bug).

wooper_method_faulty_return| Method does not respect | Called instance
the WOOPER return

convention.

Note

As mentioned above, failure detection may better be done through the
use of (Erlang) links, either explicitly set (with erlang:1link/1) or,
preferably (e.g. to avoid race conditions), with a linked variation of the
new operator (e.g. new_link/N), as discussed later in this document. So
a reader in a hurry may want to skip these considerations and directly
jump to the Method Definition section.

wooper_method_not_found The corresponding error message is:

{wooper_method_not_found, InstancePid,Classname,MethodName,
MethodArity,ListOfActualParameters}

The corresponding error message is:

{wooper_method_not_found ,InstancePid,Classname,MethodName,
MethodArity,ListOfActualParameters}.

For example:
{wooper_method_not_found,<0.30.0>,class_Cat,layEggs,2,...}

Note that MethodArity includes the implied state parameter (that will be
discussed later), i.e. here layEggs/2 might be defined as 1ayEggs (State, NumberOfNewEggs)
-> [..1.
This error occurs whenever a called method could not be found in the whole
inheritance graph of the target class. It means this method is not implemented,
at least not with the deduced arity.

"Note, though, that in general terms there is little interest in pattern-matching these mes-
sages (defensive programming is not always the best option; linking created active instances
to their creator is usually a better approach).

18

More precisely, when a message {method_name, [Argl,Arg2, .. ,ArgN]...}
(request or oneway) is received, method_name/N+1 has be to called: WOOPER
tries to find method_name(State,Argl,..,ArgN), and the method name and
arity must match.

If no method could be found, the wooper_method_not_found atom is re-
turned (if the method is a request, otherwise the error is logged), and the object
state will not change, nor the instance will crash, as this error is deemed a
caller-side one (i.e. the instance has a priori nothing to do with the error).

wooper_method_failed The corresponding error message is:

{wooper_method_failed,InstancePid,Classname,MethodName,
MethodArity, ListOfActualParameters,ErrorTerm}

For example:

{wooper_method_failed,<0.30.0>,class_Cat,myCrashingMethod,1,[],
{{badmatch,create_bug},[..]1]12}

If the exit message sent by the method specifies a PID, it is prepended to
ErrorTerm.

Such a method error means that there is a runtime failure, it is generally
deemed an instance-side issue (the caller should not be responsible for it, unless
it sent incorrect parameters), thus the instance process logs that error, sends an
error term to the caller (if and only if it is a request), and then exits with the
same error term.

wooper_method_faulty_return The corresponding error message is:

{wooper_method_faulty_return ,InstancePid,Classname,MethodName,
MethodArity,ListOfActualParameters,ActualReturn}‘.

For example:

{wooper_method_faulty_return,<0.30.0>,class_Cat,
myFaultyMethod,1, [1, [{{state_holder,..]}

This error occurs only when being in debug mode.

The main reason for this to happen is when debug mode is set and when a
method implementation did not respect the expected method return convention
(more on that later).

It means that the method is not implemented correctly (it has a bug), or,
possibly, that it was not (re)compiled with the proper debug mode, i.e. the one
the caller was compiled with.

This is an instance-side failure (the caller has no responsibility for that),
thus the instance process logs that error, sends an error term to the caller (if
and only if it is a request), and then exits with the same error term.

19

Caller-Side Error Management As we can see, errors can be better
discriminated if needed, on the caller side. Therefore one could make use of
that information, as in:

MyPoint ! {getCoordinates,[],self()},
receive
{wooper_result, [X,Y]}->
[..1;
{wooper_method_not_found,Pid,Class,Method,Arity,Params}->
[..1;
{wooper_method_failed,Pid,Class,Method,Arity,Params,
ErrorTerm}->
[..1;
% Error term can be a {Pid,Error} tuple as well, depending
% on the exit:
{wooper_method_failed,Pid,Class,Method,Arity,Params,
{Pid,Error}}->
[..1;
{wooper_method_faulty_return,Pid,Class,Method,Arity,Params,
UnexpectedTerm}->

[..1;
wooper_method_returns_void->
[..1;

OtherError ->
% Should never happen:
[..]

end.

However defensive development is not really favoured in Erlang, one may let
the caller crash on unexpected return instead. Therefore generally one may rely
simply on matching the message sent in case of success®:

MyPoint ! {getCoordinates,[],self()},

receive
{wooper_result, [X,Y] } ->
[..]
end,
[..]

Method Definition

Here we reverse the point of view: instead of calling a method, we are in the
process of implementing a callable one.

A method signature has always for first parameter the state of the instance,
for example: getAge(State) -> [..], or getCoordinate(State,Index) ->
[..].

8In which case, should a failure happen, the method call will become blocking; linking or
monitoring instances can then be done.

20

For the sake of clarity, this variable should always be named State exactly
(implying it shall not be named for example MyState, or muted as _State?).
This convention is now enforced at compile-time.

A method must always return at least the newer instance state, so that
WOOPER can rely on it from now onward.

Note that when a method "returns" the state of the (active) instance, it
returns it to the (local, process-wise) private WOOPER-based main loop of
that instance: in other words, the state variable is never exported/sent as a
message/visible from outside of its process (unless of course a developer writes
specific methods for that).

Encapsulation is ensured, as the instance is the only process able to access
its own state. On method termination, the instance then just loops again, on
its updated state: that new state will be the base one for the next call, and so
on.

One should therefore see each WOOPER instance as primarily a process
executing a main loop that keeps the current state of that instance:

e it is waiting idle for any incoming (WOOPER) message

e when such a message is received, based on the actual class of the instance
and on the method name specified in the call, the appropriate function
defined in the appropriate module is selected by WOOPER, taking into
account the inheritance graph (actually a direct per-class mapping, some-
what akin to the C++ virtual table, has already been determined at start-
up, for better performances)

e then this function is called with the appropriate parameters (those of the
call, in addition to the internally kept current state)

e if the method is a request, its specified result is sent back to the caller

e then the instance loops again, on the state possibly updated by this
method call

Thus the caller will only receive the result of a method, if it is a request.
Otherwise, i.e. with oneways, nothing is sent back (nothing can be, anyway,
short of knowing the calling PID).

More precisely, depending on its returning a specific result, the method sig-
nature will correspond either to the one of a request or of a oneway, and will use
in its body a corresponding method terminator (typically either, respectively,
wooper:return_state_result/2 or wooper:return_state/1) to ensure that
a new state and a result are returned, or just a new state.

Note that all clauses of a given method must end directly with such a method
terminator; this is so not only to be clearer for the reader, but also for WOOPER
itself, so that it can determine the type of method at hand.

Finally, a recommended good practice is to add a type specification (see
Dialyzer) to each method definition, which allows to indicate even more clearly
whether it is a request or a oneway, whether it is a const method, etc.; more

9The only legit place for _State is when a method clause does not use at all the state
variable, which, in practice, happens only when a clause throws an exception.

21

http://erlang.org/doc/man/dialyzer.html

generally WOOPER is fully compatible with the type-checking tools used by
Myriad.

Method-level comments are surely welcome additions as well, and may be
considered as mandatory.

For Requests

Requests in general Requests will use wooper:return_state_result(NewState,Result)
to terminate their clauses: the new state will be kept by the instance, whereas
the result will be sent to the caller. Hence wooper:return_state_result/2
means that the method returns a state and a result.

For example:

declareSettings(State,Settings) ->
NewState = register_settings(Settings,State),
wooper:return_state_result(NewState,settings_declared).

Two remarks there:

e register_settings/2 is an helper function here; the State parameter is
intentionally put in last position to help the reader distinguishing it from
methods (see Helper vs Static for more information on this topic)

e returning a constant atom (settings_declared) has actually an interest:
it allows to make that operation synchronous (i.e. the caller is to wait for
that result atom; it is only when the caller receives it that it will know for
sure that the operation was performed; otherwise a oneway shall be used)

All methods are of course called with the parameters that were specified in
their call tuple.
For example, if we declare following request:

giveBirth(State,NumberOfMaleChildren,NumberOfFemaleChildren) ->
[..]

Then we may call it, in the case of a cat having 2 male kitten and 3 female
ones, with:

MyCat ! {giveBirth,[_Male=2, _Female=3],self()}.

Const Requests Some clauses of a request may return an unchanged
state. It is then a const clause, and rather than using the wooper:return_state_result/2
request terminator, it shall use the wooper:const_return_result/1 one.

A request whose clauses are all const is itself a const request.

For example, instead of:

getWhiskerColor(State) ->
wooper:return_state_result(State,?getAttr(whisker_color)).

one should prefer writing this const request as (and WOOPER will enforce
it):

22

https://myriad.esperide.org/#type-checking-myriad
https://myriad.esperide.org/#type-checking-myriad

getWhiskerColor(State) ->
wooper:const_return_result(?getAttr(whisker_color)).

Note that State can be used as always, and that even there it is not reported
as unused (so one should not attempt to mute it, for example as _State).

Sender PID Requests can access to one more information than oneways:
the PID of the caller that sent the request. As WOOPER takes care automati-
cally of sending back the result to the caller, having the request know explicitly
the caller is usually not useful, thus the caller PID does not appear explicitly in
request signatures, among the actual parameters.

However WOOPER keeps track of this information, which remains available
to requests, and may be useful for some of them.

From a request body, the caller PID can indeed be retrieved by using the
getSender/0 macro, which is automatically managed by WOOPER:

giveBirth (State,NumberOfMaleChildren,NumberOfFemaleChildren) ->

[..]
CallerPID = 7getSender(),
[..]

Thus a request has natively access to its caller PID, i.e. with no need to
specify it in the parameters as well as in the third element of the call tuple; so,
instead of having to define:

MyCat ! {giveBirth, [2,3,self()],self()}
one can rely on only:
MyCat ! {giveBirth,[2,3],self(}

while still letting the possibility for the called request (here giveBirth/3, for
a state and two parameters) to access the caller PID thanks to the getSender/0
macro, and maybe store it for a later use or do anything appropriate with it.
Note that:

e having to handle explicitly the caller PID is rather uncommon, as WOOPER
takes care automatically of the sending of the result back to the caller

e the getSender/0 macro should only be used for requests, as of course the
sender PID has no meaning in the case of oneways; if that macro is called
nevertheless from a oneway, then it returns the atom undefined.

Failsafe Request Calls Whereas some WOOPER integrated calls include
a time-out, in the general case when a request call is made by a client process,
this client will wait indefinitely for the result from the corresponding requested
(active) instance.

It may be desirable instead that this waiting gets interrupted, should a crash
of said instance be detected. This can be done by having a link between the
client process (which may or may not trap EXIT messages) and the requested

23

instance. Such a link can be created at instance creation (e.g. with new link)
or later.

Another, often more appropriate, way for the client to be notified is to
monitor the requested instance: if this last one crashes while being monitored,
the monitoring processes (hence possibly the client process) will receive a DOWN
message and possibly generate an exit call. This way a client will never block
waiting for a crashed instance!®.

In the future, the API for WOOPER integrated calls may include execute_monitored_request/{2,3,4}
functions (see gen server:do_call/4 as an inspiration).

See also our process monitors section, so that a WOOPER instance can
monitor processes (possibly other WOOPER - active - instances).

Request Type Specifications Using them is not mandatory, yet is very
much recommended, and WOOPER provides suitable constructs for that.

As mentioned, a request is to return a new state and a result. The former
is always wooper:state(), so it may be made implicit. The latter can be
any type T(). So a request may be considered as returning the WOOPER
request_return(T()) type.

As for const requests, they shall be considered returning the const_request_return(T())
type.

Making the previous examples more complete:

-spec declareSettings(wooper:state(),settings()) ->
request_return(’settings_declared’).
declareSettings(State,Settings) ->
NewState = register_settings(Settings,State),
wooper:return_state_result(NewState,settings_declared).

-spec getWhiskerColor(wooper:state()) ->
const_request_return(color()).
getWhiskerColor (State) ->
wooper:const_return_result(?getAttr(whisker_color)).

(of course the developer is responsible for the definition of the settings()
and color() types here)

Note that we prefer surrounding atoms in single quotes when specified as a
type.

Of course, should type specifications be used, they must be correct; WOOPER,
will for example raise a compile-time error should request_return/1 be used
on a function that is not detected as a request.

For Oneways After relevant adaptations, most of the conventions for requests
apply to oneways.

Oneways in general Oneways will use wooper:return_state (NewState)
to terminate their clauses: the new state will be kept by the instance, and

10Similarly to a gen _server:call/{2,3}, which automatically monitors the server process and
thus can exit the calling process with an exit term containing Reason = timeout if appropriate.

24

https://github.com/erlang/otp/blob/dec82158732b72e97d42ae8a8bdf897e8f91bd23/lib/stdlib/src/gen.erl#L248C1-L248C1
https://www.erlang.org/doc/man/gen_server#call-2

no result will be returned to the caller (which is not even known - hence no
getSender/0 macro applies to oneways either).
For example:

setAge(State,NewAge) ->
wooper:return_state(setAttribute(State,age,NewAge)).

This oneway can be called that way:

MyCat ! {setAge,4}.
% No result to expect.

Const Oneways Even if it is less frequent than for requests, oneways may
also be const, i.e. may leave the state unchanged, and consequently are only
called for side-effects; for example, rather than specifying:

displayAge(State) ->
io:format("My age is "B7n.", [?getAttr(age)]),
wooper:return_state(State) .

WOOPER will ensure that, in this case, wooper:const_return/0 is pre-
ferred to wooper:return_state/1:

displayAge(State) ->
io:format("My age is "B™n.", [?getAttr(age)]),
wooper:const_return() .

A oneway whose clauses are all const is itself a const oneway.

Oneway Type Specifications The type specification of a oneway should
rely, for its return type, either on oneway_return() or on const_oneway_return(),
depending on its constness (no result to account for in either case).

Making the previous examples more complete:

-spec setAge(wooper:state,age()) -> oneway_return().
setAge(State,NewAge) ->
wooper:return_state(setAttribute(State,age,NewAge)).

-spec displayAge(wooper:state) -> const_oneway_return().
displayAge(State) ->
io:format("My age is "B™n.", [?getAttr(age)]),
wooper: const_return() .

Usefulness Of the Method Terminators The actual definition of the
method terminators (e.g. wooper:return_state_result/2, wooper:return_state/1)
is actually quite straightforward.

For example wooper:return_state_result(AState,AResult) will simply
translate into {AState, AResult}, and wooper:return_state (AState) will trans-
late into AState.

Their purpose is just to structure the method implementations, helping the
method developer not mixing updated states and results, and helping WOOPER
in categorizing appropriately all Erlang-level functions.

25

More precisely, as mentioned, all clauses of a method must directly end with
a call to its corresponding WOOPER method terminator.
For example, the following extract is correct:

% Returns the name of this instance.
-spec getName (wooper:state()) -> request_return(name()).
getName (State) ->
Name = nested_in_request(State),
wooper:const_return_result (Name) .

% (helper)
nested_in_request(State) ->
7getAttr(name) .

Whereas the next one is wrong, as getName/1 would be identified as a unex-
ported plain function (instead of as a const request), and the other way round
for nested_in_request/1:

% Returns the name of this instance.
-spec getName (wooper:state()) -> request_return(name()).
getName (State) ->

nested_in_request(State) .

% (helper)
nested_in_request(State) ->
wooper:const_return_result(?getAttr(name)) .

Defining nested_in_request/1 as shown below would not help either of
course:

% (helper)
nested_in_request(State) ->
7getAttr(name) .

So, should a method be reported as unused, most probably that no method
terminator was used (hence it was not identified as such, and thus not auto-
exported, and thus may be reported as unused).

Self-Invocation: Calling a Method From the Instance Itself

When implementing a method of a class, one may want to call other methods
of that same class (have they been overridden or not).

For example, when developing the declareBirthday/1 oneway of class_Mammal
(which, among other things, is expected to increment the mammal age), one may
want to perform a call to its setAge/2 oneway (possibly introduced by an ances-
tor class like class_Creature, or possibly overridden directly in class_Mammal)
on the current instance.

One could refer to this method respectively as a function exported by that an-
cestor (e.g. called as class_Creature:setAge(...)) or that is local to the cur-
rent module (a direct setAge(...) local call designating then class_Mammal:setAge/2).

However, in the future, child classes of class_Mammal may be introduced
(e.g. class_Cat), and they might define their own version of setAge/2.

26

Instead of hardcoding which version of that method shall be called (like in
the two previous cases, which establish statically the intended version to call),
a developer may desire - if not expect - that, for a cat or for any specialised
version thereof, declareBirthday/1 calls automatically the "right" setAge/2
method (i.e. the lastly overridden one in the inheritance graph). Possibly any
class_Cat:setAge/2 - not the version of class_Creature or class_Mammal.

Such an inheritance-aware call could be easily triggered asynchronously: a
classical message-based method call directly addressed by an instance to itself
could be used, like in self () !{setAge,10}, and (thanks to WOOPER) this
would lead to executing the "right" version of that method.

If this approach may be useful when not directly needing, from the method,
the result of the call and/or not needing to have it executed at once, in the
general case one wants to have that possibly overridden method be executed
directly, synchronously, and to obtain immediately the corresponding updated
state and, if relevant, the associated output result.

Inheritance-based Self-Invocation To perform the self-invocation of a method
whose actual implementation is automatically determined based on the inheri-
tance of the class at hand, one should call the WOOPER-defined executeRequest/{2,3}
or executeOneway/{2,3} functions (or any variation thereof), depending on the
type of the method to call.

These two helper functions behave quite similarly to the actual method calls
that are based on the operator !, except that no target instance has to be
specified (since it is by definition a call made by an instance to itself) and that
no message exchange at all is involved: the method look-up is just performed
through the inheritance hierarchy, the correct method is called with the specified
parameters and the result is then directly returned.

More precisely, executeRequest is executeRequest/2 or executeRequest/3,
its parameters being the current state, the name of the request method, and, if
needed, the parameters of the called request, either as a list or as a standalone
one.

executeRequest returns a pair made of the new state and of the result.

For example, for a request taking more than one parameter, or one list
parameter:

{NewState,Result} = executeRequest(CurrentState,myRequestName,
["hello",42])

For a request taking exactly one, non-list, parameter:

{NewState,NewCounter} = executeRequest(CurrentState,
addToCurrentCounter,78)

For a request taking no parameter:

{NewState,Sentence} = executeRequest(CurrentState,getLastSentence)

Const requests can be called!! as well, like in:

27

Color = executeConstRequest(CurrentState,getColor)

Regarding now executeOneway, it is either executeOneway/2 or executeOneway/3,
depending on whether the oneway takes parameters. If yes, they can be speci-
fied as a list (if there are more than one) or, as always, as a standalone non-list
parameter.

executeOneway returns the new state.

For example, a oneway taking more than one parameter, or one list param-
eter:

NewState = executeOneway(CurrentState,say,["hello", 42])
For a oneway taking exactly one (non-list) parameter:

NewState = executeOneway(CurrentState,setAge,78)
For a oneway taking no parameter:

NewState = executeOneway(CurrentState,declareBirthday)

Const oneways can also be called'? as well, like in:

executeConstOneway (CurrentState,displayAge)

Note

As discussed previously, there are caller-side errors that are not expected
to crash the instance. If such a call is performed directly from that
instance (i.e. with one of the execute* constructs), then two errors
will be output: the first, non-fatal for the instance, due to the method
call, then the second, fatal for the instance, due to the failure of the
executex call. This is the expected behaviour, as here the instance
plays both roles, the caller and the callee.

Self-Invocation of an Explicitly-Designated Method One can specify
explicitly the class (of course belonging to the inheritance graph of the class at
hand) defining the version of the method that one wants to execute, bypassing
the inheritance-aware overriding system.
For example, a method needing to call setAge/2 from its body would be ex-
pected to use something like: AgeState = executeOneway(State,setAge,NewAge).
If class_Cat overrode setAge/2, any cat instance would then call the over-
ridden class_Cat:setAge/2 method instead of the original class_Creature:setAge/2.
What if our specific method of class_Cat wanted, for any reason, to call the
class_Creature version of setAge/2, now shadowed by an overridden version
of it? In this case a executex*As function should be used.

HNote that currently WOOPER. will not check that a called request is indeed const, and
will silently drop any updated state.

12Note that currently WOOPER. will not check that a called oneway is indeed const, and
will silently drop any updated state.

28

These functions, which are executeRequestAs/{3,4} and executeOnewayAs/{3,4},
behave exactly as the previous executex functions, except that they take an
additional parameter (to be specified just after the state) that is the name of
the mother class (direct or not) having defined the version of the method that
we want to execute.

Note

This mother class does not have to have specifically defined or overridden
that method: this method will just be called in the context of that class,
as if it was an instance of the mother class rather than one of the actual
child class.

In our example, we should thus use simply:

AgeState = executeOnewayAs(State,class_Creature,setAge,NewAge)

in order to call the class_Creature version of the setAge/2 oneway.

Finally, as one could expect, these functions have their const counterparts,
namely: executeConstRequestAs/{3,4} and executeConstOnewayAs/{3,4},
whose usage offers no surprise, like in:

Color = executeConstRequestAs(MyState,class_Vehicle,
getColorQf, [wheels])

Static Methods

Static methods, as opposed to member methods, do not target specifically an
instance, they are defined at the class level.

They thus do not operate on a specified process or PID, they are just to be
called thanks to their module name, exactly as any exported standard function.

In order to further separate them from member methods, we recommend that
the names of static methods obey the snake_case convention (as opposed to
CamelCase one): a static method may for example be named get_default_settings
(rather than getDefaultSettings).

Being class-level, their actual definition does not involve any specific instance
state, and so only a result is to be returned thanks to their method terminator,
which is wooper:return_static/1.

The same applies to their result type in terms of type specification, which is
to be expressed using static_return(T()).

Here are a few examples of rather straightforward static methods, with or
without type specifications:

get_default_whisker_color() ->
wooper:return_static(black) .

-spec determine_croquette_appeal (cat_name()) ->
static_return(’strong’ | ‘moderate’|’weak’).
determine_croquette_appeal (_CatName="Tortilla") ->
wooper:return_static(strong) ;

29

determine_croquette_appeal (_CatName="Abysse") ->
wooper:return_static(moderate).

An example of use:

PossibleColor = class_Cat:get_default_whisker_color(),

[..]

See also the section about Methods Not Returning Anything of Interest,
which may apply to static methods notably.

Finally, having static methods leaves little interest to defining and exporting
one’s standard, plain (helper) functions; when doing so, one should wonder
whether a static method could not be a solution at least as good.

So the main purpose left to helpers is to factor out common, framework-
internal code (not targeted at users) across methods (and possibly classes), espe-
cially when it involves an instance state (e.g. display_foo(Color,Index,State)

>0,

30

State Management
Principles

We are discussing here about how an instance is to manage its inner state.

Its state is only directly accessible from inside the instance, i.e. from the
body of its methods, whether they are inherited or not: the state of an instance
is private (local to its process), and the outside can only access it through the
methods defined by its class.

The state of an instance (corresponding to the one that is given by WOOPER
as first parameter of all its methods, thanks to a variable conventionally named
State) is simply defined as a set of attributes.

Each attribute is designated by a name, defined as an atom (we recommend
using snake_case for them; all names starting with wooper_ are reserved),
and is associated to a mutable value, which can be any Erlang term; therefore
attribute_name() :: atom() and attribute_value() :: anyQ.

The current state of an instance can be thought as a list of {attribute_name,attribute_value}
pairs, like in:

[{color,black}, {fur_color,sand}, {age,13}, {name,"Tortilla"}].

State Implementation Details

Instance Attributes

Declaring them Class-specific attributes may be declared, with some
qualifiers.

Attribute declarations are fully optional'”, yet specifying them is neverthe-
less recommended, at the first place for the developer and for any upcoming
maintainer. As a result, by default WOOPER will issue a warning should no
attribute declaration be found.

To do so, the class_attributes define must be set (prior to including the
WOOPER header) to a list of attribute declarations, like in:

113

-define(class_attributes, [
ATTR_DECL1,
ATTR_DECL2,
[...]

ATTR_DECLN]) .

[...]
-include("wooper.hrl").
[...]

These declarations are to relate only to the class-specific attributes, i.e.
the ones specifically introduced by the class at hand, regardless of the ones
inherited from the mother classes.

The most general form of an attribute declaration includes the following
four information:

13Current versions of WOOPER. do not specifically use these information, but future ver-
sions may.

31

{Name, Type, QualifierInfo, Description}
where:

e Name is the name of that attribute, as an atom (e.g. fur_color)

e Type corresponds to the type specification of that attribute (e.g. [atom()],
foo:color_index()); note that the Erlang parser will not support the |
(i.e. union) operator, like in *foo’ | integer (); we recommend to use the
union variadic pseudo-function instead (with any arity greater or equal to
2), like in: union(’foo’,integer))

e QualifierInfo is detailed just below

e Description is a plain string describing the purpose of this attribute;
this is a comment aimed only at humans, which preferably does not start
with a capital letter and does not end with a dot (e.g. "describes the
color of the fur of this animal (not including whiskers)" or a
shorter, maybe better, "color of the fur of this animal (not including
whiskers)")

A qualifier information is either a single qualifier, or a list of qualifiers.
A qualifier can be:

e a scope qualifier: public, protected or private; in future versions, a
public attribute will correspond to the union of settable and gettable
and will result in accessor methods being automatically generated; for
example, should the fur_color attribute be declared public, then:

— the getFurColor/1 const request would be added (with its spec):

getFurColor (State) ->
wooper: const_return_result(?getAttr (fur_color)).

— the setFurColor/2 oneway would be added (with its spec):

setFurColor(State,FurColor) ->
wooper :return_state(
setAttribute(State, fur_color, FurColor)).

e an initialisation qualifier: {initial, 18} would denote that the initial
value of the corresponding attribute is 18 (this value would then be set
even before entering any constructor)

e a mutability qualifier: {const,24} would denote that the corresponding
attribute is const and that its (fixed) value is 24 (thus const implies
here initial, which should not specified in that case); const can also be
specified just by itself (with no initial value), so that it can be initialised
later, in constructors, and, of course, just once (this is useful for non-
immediate, yet const, values)

e the none qualifier: none implies that no specific qualifier is specified, and
as a result the defaults apply; this qualifier can only be used by itself (not
in a list), as an alternative to specifying an empty qualifier list

32

http://erlang.org/doc/reference_manual/typespec.html

The defaults are:

e protected

e mutable (i.e. non-const)

e 10 specific initial value enforced (not even undefined)
So an example of attribute declaration could be:

{age, integer(), {initial, 18},
"stores the current age of this creature"}

Note

Currently, these information are only of use for the developer (i.e. for
documentation purpose). No check is made about whether they are
used, whether no other attributes are used, whether the type is mean-
ingful and indeed enforced, the default initial value is not set, etc.; yet at
least some of these information might be handled by future WOOPER
versions.

Shorter attribute declarations can also used, then with less than the 4 afore-
mentioned pieces of information mentioned:

e only 3 of them: {Name, Type, Description} (implying: qualifier is none)

e only 2 of them: {Name, Description} (implying: type is any (), qualifier
is none)

e only 1 of them: Name (implying: type is any(), qualifier is none, no
description)

(and, of course, any number of attributes may not be specified at all)
Finally, a full example of the declaration of class attributes can be:

-define(class_attributes, [
name,
{age, integer(), "stores the current age of this creature"},
birth_date,
{weight, "total weight measured"}]).

Storing them The attributes of a class instance can be seen as a series of
key /value pairs stored in an associative table, whose type has been chosen for
its look-up/update efficiency and scalability.

This is a dynamic datastructure, allowing attributes to be added, removed or
modified at any time (the safer conventions that apply will be discussed later).

This table, among other elements, is itself stored in the overall instance
state, i.e. in the variable designated by State specified at the beginning of
each member method (and constructors, and destructor), on which the process
corresponding to active instances is looping, and whose type is wooper:state().

For clarity, we strongly advise to suffix the name of the various state variables
used with State (e.g. RegisteredState, FinalState, etc.).

33

Managing the State of an Instance

A set of WOOPER-provided functions allows to operate on these state variables,
notably to read and write the attributes that they contain.

As seen in the various examples, method implementations will access (read /write)
attributes stored in the instance state, whose original version (i.e. the state of
the instance at the method beginning) is always specified as their first parame-
ter, conventionally named State.

This current state can be then modified in the method, and a final state (usu-
ally an updated version of the initial one) will be returned locally to WOOPER,
thanks to a method terminator.

Then the code (automatically instantiated by the WOOPER header in the
class implementation) will loop again for this instance with this updated state,
waiting for the next method call, which will possibly change again the state
(and trigger side-effects), and so on.

One may refer to wooper.hrl for the actual definition of most of these WOOPER
constructs.

Modifying State

The setAttribute/3 function Setting an attribute (creating'® and/or
modifying it) should be done with the setAttribute/3 function:

NewState = setAttribute(AState, AttributeName, NewAttributeValue)

Its type specification is:

-spec setAttribute(wooper:state(), attribute_name(), attribute_value()) ->
wooper:state() .

For example, AgeState = setAttribute(State, age, 3) will return a new
state, bound to AgeState, exact copy of State (notably with all the attribute
pairs equal) but for the age attribute, whose value will be set to 3.

Therefore, during the execution of a method, any number of states can be
defined (e.g. State, InitialisedState, AgeState, etc.) before all, but the one
that is returned, are garbage-collected.

Note that the corresponding state duplication remains efficient both in terms
of processing and memory, as the different underlying state structures (e.g.
State and AgeState) actually share all their terms except the one modified -
thanks to the immutability of Erlang variables that allows to reference rather
than copy, be these datastructures tables, records, or anything else.

In various cases, notably in constructors, one needs to define a series of
attributes in a row, but chaining setAttribute/3 calls with intermediate states
that have each to be named is not really convenient.

A Detter solution is to use the setAttributes/2 function (note the plural)
to set a list of attribute name/attribute value pairs in a row.

Its type specification is:

M Attribute creation should (by convention) only be done in constructors (not in methods).

34

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl

-spec setAttributes(wooper:state(), [{attribute_name(), attribute_value()}]) ->
wooper :state() .

For example:

ConstructedState = setAttributes(MyState,
[{age,3},{whisker_color,white}])

will return a new state, exact copy of MyState but for the listed attributes,

set to their respective specified value.

The swapInAttribute/3 function This function allows to swap, in the

specified state, the current value of the specified attribute with the specified
value.

Its type specification is:

-spec swapInAttribute(wooper:state(), attribute_name(),
NewValue :: attribute_value()) ->
{wooper:state(), PastValue:: attribute_value()}.

For example:

{NewState,PastColor} = swapInAttribute(AState,fur_color,_NewValue=black)

The removeAttribute/2 function

Note

The removeAttribute/2 function is now deprecated and should not be
used anymore - unless, maybe, if wanting to favour composition over
inheritance, or surely if performing hot code update (for example when
a version upgrade results in a given attribute not being defined anymore
once relying on the newer class definition).

This function may be used in order to fully remove an attribute entry (i.e.
the whole key/value pair).
Its type specification is:

-spec removeAttribute(wooper:state(), attribute_name()) ->
wooper:state() .

For example NewState = removeAttribute(State, an_attribute) could
be used, for a resulting state having no key corresponding to an_attribute.

Except in the aforementioned very specific cases, this function is not used,
as we prefer defining all attributes once for all, at construction time, and never
adding or removing them dynamically: the good practice is just to operate on
their value, which can by example be set to undefined, without having to deal
with the fact that, depending on the context, a given attribute may or may not
be defined (kids: don’t do that).

Neither the setAttribute* variants nor removeAttribute/2 can fail, re-
gardless of the attribute being already existing or not.

35

Reading State

The hasAttribute/2 function This function tells whether, in the speci-
fied state, the specified attribute exists.
Its type specification is:

-spec hasAttribute(wooper:state(), attribute_name()) ->
boolean() .

For example:
case hasAttribute(AState, fur_color) of

true ->

[...]

Note

Using the hasAttribute/2 function is generally not recommended, as,
once an instance is constructed, a given attribute shall always exist or
never - unless wanting to favour composition over inheritance.

To test whether an attribute is defined, one could use the hasAttribute/2
function: hasAttribute (AState, AttributeName), which returns either true
or false, and cannot fail.

For example, true = hasAttribute(State, whisker_color) matches if
and only if the attribute whisker_color is defined in state State.

Note that generally, as already mentioned, it is a bad practice to define
attributes outside of the constructor of an instance, as the availability of an
attribute could then depend on the actual state, which is an eventuality generally
difficult to manage reliably.

A better approach is instead to define all possible attributes directly from
the constructor. They would then be assigned to their initial value and, if none
is appropriate, they should be set to the atom undefined (instead of not being
defined at all).

The getAttribute/2 function Getting the value of an attribute from an
explicitly-designated state is to be done with the getAttribute/2 function:

AttributeValue = getAttribute(AState, AttributeName)
Its type specification is:

-spec getAttribute(wooper:state(), attribute_name()) ->
attribute_value().

For example, MyColor = getAttribute(State, whisker_color) returns
the value of the attribute whisker_color from state State.

The requested attribute may not exist in the specified state. In this case, a
runtime error is issued.

Requesting a non-existing attribute triggers a bad match. In the previous ex-
ample, should the attribute whisker_color not have been defined, getAttribute/2
would return:

{key_not_found, whisker_color}

36

The getAttr/1 macro Quite often, when having to retrieve the value of
an attribute from a state variable, that variable will be named State, notably
when using directly the original state specified in the method declaration.

Indeed, when a method needs a specific value, generally either this value was
already available in the state it began with (then we can read it from State), or
is computed in the course of the method, in which case that value is most often
already bound to a variable, which can then be re-used directly rather than be
fetched from a state.

In this case, the getAttr/1 macro can be used: 7getAttr(whisker_color)
expands (literally) as getAttribute(State, whisker_color), and is a tad
shorter.

This is implemented as a macro so that the user remains aware that an
implicit variable named State is then used.

The less usual cases where a value must be read from a state variable
that is not the initial State one occur mostly when wanting to read a value
from the updated state returned by a execute* function call. In this case the
getAttribute/2 function should be used.

The getMaybeAttribute/2 function Getting the value of an attribute
that may or may not be defined is to be done with the getMaybeAttribute/2
function.

Its type specification is:

-spec getMaybeAttribute(wooper:state(), attribute_name()) ->
maybe ({’value’, attribute_value()}).

Note that:

e thanks to Myriad, maybe(T) :: T | ’undefined’

e the value atom tag is used to discriminate a non-existing attribute from
one whose value is undefined

For example:

case getMaybeAttribute(AState, AttributeName) of

undefined ->

[...];
{value, AttrValue} ->
[...]
end.
Note

Using the getMaybeAttribute/2 function is generally not recom-
mended, as, once an instance is constructed, a given attribute shall
always exist or never - unless wanting to favour composition over inher-
itance.

37

The getMaybeAttr/1 macro Like the getAttribute/2 function has the
getAttr/1 macro, to the getMaybeAttribute/2 function is associated a conve-
nience macro, getMaybeAttr/1.

This macro should be used only if the attribute of interest cannot have the
undefined value, as this macro returns directly the value V obtained (if any),
instead of its {value,V} tagged version'®.

For example, to return the value of a possibly-defined attribute named
my_description, whose value is known to never be equal to undefined (for

example because it is a string in all cases):

get_maybe_description(State) ->
7getMaybeAttr (my_description) .

Read-Modify-Write Operations Some additional helper functions are pro-
vided for the most common operations, to keep the syntax as lightweight as pos-
sible (and possibly increase a bit the performances due to fewer inter-module
calls).

The addToAttribute/3 function When having a numerical attribute,
addToAttribute/3 adds the specified number (i.e. integer or float) to the at-
tribute.

Its type specification is:

-spec addToAttribute(wooper:state(), attribute_name(), number()) ->

wooper:state() .

For example:

MyState = addToAttribute(FirstState, a_numerical_attribute, 6)

In MyState, the value of attribute a_numerical_attribute is increased of
6, compared to the one in FirstState.

Calling addToAttribute/3 on a non-existing attribute will trigger a runtime
error ({key_not_found, AttributeNamel}).

If the attribute exists, but no addition can be performed on it (i.e. if it is
meaningless for the type of the current value), a badarith runtime error will
be issued.

The subtractFromAttribute/3 function When having a numerical at-
tribute, subtractFromAttribute/3 subtracts the specified number (i.e. integer
or float) from the attribute.

Its type specification is:

-spec subtractFromAttribute(wooper:state(), attribute_name(),
wooper:state() .

5Tndeed, for convenience, this macro returns values of type maybe (attribute_value()) (not
of the maybe ({’value’, attribute_value()}) type, thus an attribute set to the undefined
value could not be discriminated from a non-defined attribute).

38

number()) ->

For example:

MyState = subtractFromAttribute(FirstState, a_numerical_attribute, 7)

In MyState, the value of attribute a_numerical_attribute is decreased of
7, compared to the one in FirstState.

Calling subtractFromAttribute/3 on a non-existing attribute will trigger a
runtime error ({key_not_found, AttributeNamel}). If the attribute exists, but
no subtraction can be performed on it (meaningless for the type of the current
value), a badarith runtime error will be issued.

The toggleAttribute/2 function Flips the value of the specified (sup-
posedly boolean) attribute: when having a boolean attribute, whose value is
either true or false, sets the opposite logical value to the current one.

Its type specification is:

-spec toggleAttribute(wooper:state(), attribute_name()) ->
wooper:state() .

For example:
NewState = toggleAttribute(State, my_boolean_attribute)

Calling toggleAttribute/2 on a non-existing attribute will trigger a run-
time error ({key_not_found, AttributeNamel}). If the attribute exists, but
has not a boolean value, a badarith runtime error will be issued.

The appendToAttribute/3 function When having an attribute whose
value is a list, appends the specified element to this list, at first position.
Its type specification is:

-spec appendToAttribute(wooper:state(), attribute_name(), term()) ->
wooper:state() .

For example, if the my_list_attribute attribute was already set to [see_you,
goodbye] in State, then after NewState = appendToAttribute(State, my_list_attribute,
hello), the my_list_attribute attribute defined in NewState will be equal to
[hello, see_you, goodbyel, all other attributes being unchanged.
Calling appendToAttribute/3 on a non-existing attribute will trigger a a
badmatch runtime error. If the attribute exists, but is not a list, an ill-formed
list will be created (e.g. [81false] when appending 8 to false, which is not a
list).

The deleteFromAttribute/3 function When having an attribute whose
value is a list, deletes the first match of the specified element from the attribute
list.

Its type specification is:

39

-spec deleteFromAttribute(wooper:state(), attribute_name(), term()) ->
wooper :state() .

For example: NewState = deleteFromAttribute(State, my_list_attribute,
hello), with the value corresponding to the my_list_attribute attribute
in State variable being [goodbye, hello, cheers, hello, see_you] should
return a state whose my_list_attribute attribute would be equal to [goodbye,
cheers, hello, see_youl] (firs hello is removed), all other attributes being
unchanged.

If no element in the list matches the specified one, no error will be triggered
and the list will be kept as is.

Calling deleteFromAttribute/3 on a non-existing attribute will trigger a
badmatch runtime error. If the attribute exists, but is not a list, a function_clause
runtime error will be issued.

The popFromAttribute/2 function When having an attribute whose value
is a list, removes the head from the list and returns a pair made of the updated
state (same state except that the corresponding list attribute has lost its head,
it is equal to the list tail now) and of that head.

Its type specification is:

-spec popFromAttribute(wooper:state(), attribute_name()) ->
{wooper:state(), term()}.

For example: {NewState, Head} = popFromAttribute(State, my_list_attribute).
If the value of the attribute my_list_attribute was [5,8,3], its new value (in
NewState) will be [8,3] and Head will be bound to 5.

The addKeyValueToAttribute/4 function When having an attribute whose
value is a table (that is a Myriad table:table() pseudo-type), adds specified
key/value entry to that table attribute.

Its type specification is:

-spec addKeyValueToAttribute(wooper:state(), attribute_name(),
table:key(), table:value()) -> wooper:state().

For example:

TableState = setAttribute(State, my_table, table:new()),
NewState = addKeyValueToAttribute(TableState, my_table, my_key, my_value)

will result in having the attribute my_table in state variable NewState being
a table with only one entry, whose key is my_key and whose value is my_value.

40

Multiple Inheritance & Polymorphism
The General Case

Both multiple inheritance and polymorphism are automatically managed by
WOOPER: even if our cat class does not define a getAge/1 request, it can
nevertheless readily be called on a cat instance, as it is inherited from its mother
classes (here from class_Creature, an indirect mother class).

Therefore all creature instances can be handled the same, regardless of their
actual classes:

% Inherited methods work exactly the same as methods defined
% directly in the class:
MyCat ! {getAge,[1,selfQ},
receive
{wooper_result,Age} ->
io:format("This is a "B year old cat.", [Agel)
end,

% Polymorphism is immediate:
% (class_Platypus inheriting too from class_Mammal,
% hence from class_Creature).
MyPetList = [MyCat,MyPlatypus],
[begin
PetPid ! {getAge,[],selfQ},
receive
{wooper_result,Age} ->
io:format("This is a "B year old creature.",[Agel)
end
end || PetPid <- MyPetList].

Running this code should output something like:

This is a 4 year old cat.
This is a 4 year old creature.
This is a 9 year old creature.

The point here is that the implementer does not have to know what are the
actual classes of the instances that are interacted with, provided that they share
a common ancestor; polymorphism allows to handle them transparently.

The Special Case of Diamond-Shaped Inheritance

Principle A diamond-shaped inheritance occurs, in a multiple inheritance
context, whenever a class inherits more than once (usually indirectly) of a given
class.

Note

More generally speaking, diamond-shaped inheritance is seldom neces-
sary. More often than not, it is the consequence of a less-than-ideal
OOQP design, and should, if applicable, be avoided anyway.

41

http://en.wikipedia.org/wiki/Diamond_problem

This may happen when, like in the WOOPER example presented later in
this document:

e a very general "root" class (e.g. class_Creature) sits at the top of at
least a part of the hierarchy!6

e various child classes derive from it (e.g. class_Mammal and a class_OvoviviparousBeing
may derive from class_Creature for obvious reasons)

e a more concrete class (e.g. class_Platypus) has to derive from at least
two of these child classes (since a platypus happens to be both a mammal
and an ovoviviparous being)

Then the concrete class will end up deriving more than once from the same
root class (here: class_Platypus will derive indirectly from class_Creature
twice).

Diamond-shaped inheritance may lead to issues in terms of state manage-
ment (e.g. attributes having possibly in turn to be defined more than once),
behaviour (multiple implementations having to be selected for some methods)
and initialisation (extraneous constructor and destructor calls being made).

Modelling & Implementation Choices The root of such issue is to deter-
mine what is the meaning of the multiple is-a relationships involved in this
diamond-shaped inheritance.

If one design solution is to favour composition over inheritance to sort out
these cases, by default we tend with WOOPER to consider that a single is-a
relationship should apply in that case, i.e. that for example a platypus "is a"
creature in a single way (having to inherit the attributes from creature only
once, and its member methods as they are defined at the creature level); it is a
case of virtual inheritance.

More precisely, with WOOPER, as the method table is constructed in the
order specified in the declaration of the superclasses, like in:

-define(superclasses, [class_X,class_Y,...]).

and as child classes override mother ones, when an incoming WOOPER
message arrives the selected method should be the one defined in the last
inheritance branch of the last child (if any), otherwise the one defined in the
next to last branch of the last child, etc.

Generally speaking, overriding in that case the relevant methods that were
initially defined in the child class at the base of the diamond, in order that
they perform explicitly a direct call to the wanted module, is by far the most
reasonable solution, in terms of clarity and maintainability, compared to trying
to guess which version of the method in the inheritance graph would be called
implicitly.

Regarding the instance state, the attributes are set by the constructors,
and the developer can select in which order the direct mother classes should be
constructed.

16For example, it might be the case with classTraceEmitter if relying on Ceylan-Traces, or
class Actor if using Sim-Diasca, as such base classes are rather ubiquitous in their respective
contexts.

42

https://en.wikipedia.org/wiki/Virtual_inheritance
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/class_TraceEmitter.erl
https://traces.esperide.org/
https://github.com/Olivier-Boudeville-EDF/Sim-Diasca/blob/main/sim-diasca/src/core/services/scheduling/class_Actor.erl
https://github.com/Olivier-Boudeville-EDF/Sim-Diasca

However, in such a diamond-shaped inheritance scheme, the constructor of
the class that sits at the top of a given diamond will be called more than once,
and any side-effect that it would induce would then occur as many times as this
class is a common ancestor of the actual class; it may be advisable to create
idempotent constructors in that case.

This can be the case naturally, or can be ensured simply whenever a given
root class introduces at least one attribute (which is the general case): by testing
whether the initial state given to its constructor already includes this attribute,
the constructor can determine whether it has already been applied, in which
case it may return the state that it received as it is; otherwise (it has not been
applied already), it shall then be fully executed, by setting its attributes!”,
triggering any relevant processing and side effects, and so on.

When introducing such trait-specific attributes, care must be taken to name
them so that they should never clash with other attribute names.

For example, should the class_Creature consider that each creature has a
date of birth, its constructor may be like:

construct(State, DateOfBirth) ->
case hasAttribute(State, birth_date) of

% Already initialised, nothing more to do, shortcut:
true ->
State;

% Full, actual initialisation, to happen exactly once per instance:
false ->

% Trigger side-effects, change state, etc.:

InitState = init(State),

% At least this attribute is defined:

setAttribute(InitState, birth_date, DateOfBirth)

end.

The next section will show that these idempotent constructors lead naturally
to the concepts of composition and interfaces.

Interfaces: to be able to favour Composition over Inheritance

A few specific features for traits, interfaces and composition had been intro-
duced; yet, short of a specific extra support providing enough interest, they
have been disabled since WOOPER offers already, natively, everything needed

to perform composition over inheritance. Relying on such composition can be as
simple as replacing the inheritance from some mother classes by the definition

of passive instances in attributes with corresponding accessor methods.

WOOPER also provides a few general-purpose interfaces, such as Identifiable,

Describable and StaticDescribable, Serialisable (refer to the serialisation
section), Upgradable (refer to the hot code update section). They can serve as

a source of inspiration for any other interface to be introduced.

17 A single set of them exists thus, as opposed to as many sets as the number of times the
class of interest inherits from the root class (no state duplication can exist in WOOPER in
so far as, for a given instance, attribute names are unique).

43

https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/src/interfaces

44

Life-Cycle

Basically, creation and destruction of instances are managed respectively thanks
to the new/new_link and the delete operators (all these operators are WOOPER-
reserved function names, for all arities, and are automatically generated), like
in:

MyCat = class_Cat:new(Age,Gender,FurColor,WhiskerColor),
MyCat ! delete.

Instance Creation: new/new_link and construct

Role of a new /construct Pair Whereas the purpose of the new / new_link
operators is to create a working (active) instance on the user’s behalf, the role
of construct is to initialise an instance of that class (regardless of how it was
created, i.e. of which new variation was triggered), while being able to be chained
for inheritance, as explained later.

Such an initialisation is of course part of the instance creation: all calls
to any of the new operators result in an underlying call to the corresponding
constructor (construct operator).

For example, both creations stemming from MyCat = class_Cat:new(A,B,C,D)
and MyCat = class_Cat:new_link(A,B,C,D) willrely on class_Cat:construct/5
to set up a proper initial state for the MyCat instance.

The same class_Cat:construct(State,A,B,C,D) will be called for all cre-
ation cases (one may note that, because of its first parameter, which accounts
for the WOOPER-provided initial State parameter, the arity of construct is
equal to the one of new / new_link plus one).

The new_link operator behaves exactly as the new operator, except that
it creates an instance that is Erlang-linked with the process that called that
operator, exactly like spawn_link behaves compared to spawn'®.

The new and new_link operators are automatically defined by WOOPER
(thanks to a relevant parse transform), but they rely on their corresponding,
class-specific, user-defined construct operator (only WOOPER is expected to
make use of it). More precisely, for each of the construct/N+1 operator de-
fined by the class developer, WOOPER creates a full set of corresponding new
variations, including new/N and new_link/N.

At least one construct operator must be defined by the class developer
(otherwise WOOPER will raise a compile-time error), knowing that any num-
ber of them can then be defined, each with its own arity (e.g. construct/1,
construct/2, construct/3, etc.), and each with possibly multiple clauses that
will be, as usual, selected at runtime based on pattern-matching.

construct operators may not be exported explicitly by the class developer,
as WOOPER will automatically take care of that if necessary.

For example:

% If having defined class_Dog:construct/{1,3}:
MyFirstDog = class_Dog:new(),
MySecondDog = class_Dog:new(_Weight=4.4,_Colors=[sand,white]).

18For example it induces no race condition between linking and termination in the case of
a very short-lived spawned process.

45

The Various Ways of Creating an Instance As shown with the new_link
operator, even for a given set of construction parameters, many variations of
new can be of use: linked or not, synchronous or not, with a time-out or not, on
current node or on a user-specified one, etc.

For a class whose instances can be constructed from N actual parameters
(hence having a construct/N+1 defined), the following new operator variations,
detailed in the next section, are built-in:

e if an active instance is to be created on the local node:

— non-blocking creation: new/N and new_1link/N

— blocking creation: synchronous_new/N and synchronous_new_link/N

— blocking creation with time-out: synchronous_timed_new/N and
synchronous_timed_new_link/N

e if an active instance is to be created on any specified remote node:

— non-blocking creation: remote_new/N+1 and remote_new_link/N+1
— blocking creation: remote_synchronous_new/N+1 and remote_synchronous_new_link/N+1

— blocking creation with time-out: remote_synchronous_timed_new/N+1
and remote_synchronous_timed_new_link/N+1

e if a passive instance is to be created by the current process: new_passive/N

Note

All remote_x* variations require one additional parameter (that shall be
specified first), since the remote node on which the instance should be
created has of course to be specified.

All supported new variations are detailed below.

Asynchronous new This corresponds to the plain new, new_link opera-
tors discussed earlier, relying internally on the usual spawn* primitives . These
basic operators are asynchronous (non-blocking): they trigger the creation
of a new instance, and return immediately, without waiting for it to complete
and succeed, and the execution of the calling process continues while (hopefully,
i.e. with no guarantee - the corresponding process may immediately crash) the
instance is being created and executed.

Synchronous new As mentioned, with the previous asynchronous forms,
the caller has no way of knowing when the spawned instance is up and running
(if it ever happens), unless triggering a later request on it.

Thus two counterpart operators, synchronous_new/synchronous_new_link
are also automatically generated.

They behave like new/new_1link except that they will return only when (and
if) the created instance is up and running: they are blocking, synchronous,
operators.

For example, once (if) MyMammal = class_Mammal:synchronous_new(...)
returns, one knows that the MyMammal instance is fully created and waiting for
incoming messages.

46

The implementation of these synchronous operations relies on a message
(precisely: {spawn_successful,InstancePid}) being automatically sent by
the created instance to the WOOPER code on the caller side, so that the
synchronous_new operator will return to the user code only once successfully
constructed and ready to handle messages.

Timed Synchronous new Note that, should the instance creation fail,
the caller of a synchronous new would then be blocked for ever, as the awaited
message would actually never be sent by the failed new instance. In some cases
a time-out may be useful, so that the caller may be unblocked and may react
appropriately.

This is why the synchronous_timed_new* operators have been introduced:
if the caller-side time-out'? expires while waiting for the created instance to
answer, then they will throw an appropriate exception:

e cither {synchronous_time_out,Classname} if it was a node-local cre-
ation (where Classname is the name of the class corresponding to the
instance to create; e.g. class_Cat)

e or {remote_synchronous_time_out,Node,Classname}, where Node is the
name of the node (as an atom) on which the instance was to be created

Then the caller may or may not catch this exception.

Remote new Exactly like a process might be spawned on another Er-
lang node, a WOOPER (active) instance can be created on any user-specified
available Erlang node.

To do so, the remote_x*new* variations shall be used. They behave exactly
like their local counterparts, except that they take an additional information,
as first parameter: the node on which the specified instance must be created.

For example:

MyCat = class_Cat:remote_new(TargetNode, Age, Gender,
FurColor, WhiskerColor).

Of course:

e the remote node must be already existing
e the current node must be able to connect to it (shared cookie)

e all modules that the instance will make use of must be available on the
remote node, including the ones of all relevant classes (i.e. the class of the
instance but also its whole class hierarchy)

All variations of the new operator are always defined automatically by WOOPER:
nothing special is to be done for them, provided of course that a corresponding
constructor has been defined indeed.

19Depending on whether or not the class to instantiate was compiled in debug mode, the
time-out is to last by default for, respectively, 5 seconds (shorter, to ease debugging) or for 30
minutes (longer, to favour robustness).

47

Some Examples of Instance Creation Knowing that a cat can be created
here out of four parameters (Age, Gender, FurColor, WhiskerColor), various
cat (active) instances could be created thanks to:

% Local asynchronous creation:
MyFirstCat = class_Cat:new(_Age=1,male,brown,white),

% The same, but a crash of this cat will crash the current
% process too:
MySecondCat = class_Cat:new_link(2,female,black,white),

% This cat will be created on OtherNode, and the call will

% return only once it is up and running or once the creation

% failed. As moreover the cat instance is linked to the

% instance process, it may crash this calling process

% (unless it traps EXIT signals):

MyThirdCat = class_Cat:remote_synchronous_timed_new_link(
OtherNode,3,male,grey,black),

[...]

Definition of the construct Operator FEach class must define at least one
construct operator, whose role is to fully initialise, based on the specified
construction parameters, the state of new instances in compliance with the
class inheritance - regardless of the new variation being used.

The type specification of a constructor relying on N construction parameters
(hence construct/N+1) is:

-spec construct(wooper:state() ,P1,P2,..,PN) -> wooper:state().

In the context of class inheritance, the construct operators are expected
to be chained: they must be designed to be called by the ones of their child
classes, and in turn they must call themselves the constructors of their direct
mother classes, if any (should there be multiple direct mother classes, usually
their constructors are to be called in the same order as their declaration order
in the superclasses define).

Hence they always take the current state of the instance being created as a
starting base, and returns it once updated, first from the direct mother classes,
then by this class itself.

For example, let’s suppose class_Cat inherits directly both from class_Mammal
and from class_ViviparousBeing, has only one attribute (whisker_color) of
its own, and that a new cat is to be created out of four pieces of information:

-define(superclasses, [class_Mammal,class_ViviparousBeing]).
-define(class_attributes, [whisker_color]).
% Constructs a new Cat.

construct (State,Age,Gender ,FurColor,WhiskerColor) ->
% First the (chained) direct mother classes:

48

MammalState = class_Mammal:construct(State,Age,Gender,
FurColor),
ViviparousMammalState =
class_ViviparousBeing:construct (MammalState),
% Then the class-specific attributes:
setAttribute(ViviparousMammalState,whisker_color,
WhiskerColor).

The fact that the Mammal class itself inherits from the Creature class does not
have to appear here: it is to be managed directly by class_Mammal : construct/4
(at any given inheritance level, only direct mother classes must be taken into
account).

One should ensure that, in constructors, the successive states are always
built from the last updated one, unlike this case (where no mother class has
been declared):

% WRONG, the age update is lost:

construct (State,Age,Gender) ->
AgeState = setAttribute(State,age,Age),
% AgeState should be used here, not State:
setAttribute(State,gender,Gender),

This would be correct:

% RIGHT but a bit clumsy:

construct (State,Age,Gender) ->
AgeState = setAttribute(State,age,Age),
setAttribute (AgeState,gender,Gender) .

Recommended form:

% BEST:
construct (State,Age,Gender) ->
setAttributes(State, [{age,Age},{gender,Gender}]).

The WOOPER defaults would imply that, in the first case, at compilation
time the AgeState variable would be reported as unused, and this warning
would be considered as a fatal error.

Note

There is no strict relationship between construction parameters and in-
stance attributes, neither in terms of cardinality, type nor value.

For example, attributes could be set to default values, a point could be
created from an angle and a distance but its actual state may consist
on two cartesian coordinates instead, etc.

Therefore both have to be defined by the class developer, and, in the
general case, attributes cannot be inferred from construction parame-
ters.

Finally, a class can define multiple clauses for any of its constructors: the
proper one will be called based on the pattern-matching performed on these
parameters.

49

Instance Deletion

Automatic Chaining Of Destructors We saw that, when implementing a
constructor (construct/N), like in all other OOP approaches the constructors
of the direct mother classes have to be explicitly called, so that they can be
given the proper parameters, as determined by the class developer.

Conversely, with WOOPER, when defining a destructor for a class (destruct/1),
one only has to specify what are the specific operations and state changes (if
any) that are required so that an instance of that class is deleted: the proper
calling of the destructors of mother classes across the inheritance graph is au-
tomatically taken in charge by WOOPER.

Once the user-specified actions have been processed by the destructor (e.g.
releasing a resource, unsubscribing from a registry, deleting other instances,
closing properly a file, etc.), it is expected to return an updated state, which
will be given in turn to the destructors of the instance direct mother classes.

WOOPER will automatically make use of any user-defined destructor, oth-
erwise the default one will be used, doing nothing (i.e. returning the exact same
state that it was given).

Note also that, as always, there is a single destructor associated to a given
class.

As constructors, destructors should not be exported, as WOOPER is to
automatically take care of that.

Asynchronous Destruction: using destruct/1 The type specification of
a destructor (destruct/1) is:

-spec destruct(wooper:state()) -> wooper:state().

More precisely, either the class implementer does not define at all a destruct/1
operator (and therefore uses the default do-nothing destructor), or it defines it
explicitly, like in:

destruct(State) ->
io:format("An instance of class “w is being deleted now!", [?MODULE]),
% Quite often the destructor does not need to modify the state of
% the instance:
State.

In both cases (default or user-defined destructor), when the instance will be
deleted (e.g. MyInstance ! delete is issued), WOOPER will take care of:

e calling any user-defined destructor for that class

e then calling the ones of the direct mother classes, which will in turn call
the ones of their mother classes, and so on

Note that the destructors for direct mother classes will be called in the
reverse order of the one according to the constructors ought to have been called:
if a class class_X declares class_A and class_B as mother classes (in that
order), then in the class_X:construct definition the implementer is expected
to call class_A:construct and then class_B:construct, whereas on deletion
the WOOPER-enforced order of execution will be: class_X:destruct/1, then
class_B:destruct/1, then class_A:destruct/1, for the sake of symmetry.

50

Synchronous Destruction: using synchronous_delete/1 WOOPER au-
tomatically defines as well a way of deleting synchronously a given instance: a
caller can request a synchronous (blocking) deletion of that instance so that,
once notified of the deletion, it knows for sure the instance does not exist any-
more, like in:

InstanceToDelete ! {synchronous_delete,self()},
% Then the caller can block as long as the deletion did not occur:

receive
{deleted,InstanceToDelete} ->
doSomething ()
end.

The class implementer does not have to do anything to support this feature,
as the synchronous deletion is automatically built by WOOPER on top of the
usual asynchronous one (both thus rely on destruct/1).

For a more concise way of doing the same, see also:

e wooper:delete_synchronously_instance/1 (for a single instance)

e wooper:delete_synchronously_instances/1 (for multiple ones)

o1

Passive Instances

A passive instance is an instance of a WOOPER class that is not powered by
a dedicated (Erlang) process: it is just a mere (opaque) term, a pure data-
structure that holds the state?? of that instance, and that is returned to the
process having created that instance (which can then do whatever it wants with
it - most probably store it as a "super attribute").

As a consequence, such a passive instance will not be able to perform any
spontaneous behaviour on its own, or to have its member methods triggered
by other processes. However most operations that can be done on "standard"
(active) WOOPER instances can also be done on passive ones: like their active
counterparts, they are constructed thanks to, well, one of the constructors de-
fined by their class, they are destructed thanks to, well, their destructor, and
in-between they will retain their inner state and be able to execute any re-
quest or oneway triggered by the process holding that term (and of course any
underlying multiple inheritance will be respected).

Triggering a method onto a passive instance will result in a relevant function
to be evaluated, not involving any message.

To create a passive instance, the new_passive operator shall be used, like
in:

MyPassiveCat = class_Cat:new_passive(_Age=2, female, _Fur=brown, _Whiskers=white)
Then methods can be triggered on it, like in:

{WhiskerCat,white} = wooper:execute_request(MyPassiveCat, getWhiskerColor),
OlderCat = wooper:execute_oneway(WhiskerCat, declareBirthday),
RedCat = wooper:execute_oneway(OlderCat, setFurColor, red),

[...]

Note that, in addition to execute_request/{2,3}, execute_const_request/{2,3}
are available; the latter return only the request result, as the state of the passive
instance shall be constant (this is checked in debug mode).

Symmetrically, in addition to execute_oneway/{2, 3}, execute_const_oneway/{2,3}
are available even though their use is less common.

Until, finally:

wooper :delete_passive(RedCat) .

Types may be defined in order to clarify the fact that a term corresponds
to a (WOOPER) passive instance.

For example, for any kind of instance owning a passive calendar instance
(created with, say, class_Calendar:new_passive/2), one could define and use,

as attribute type?!:
-type calendar_passive() :: wooper:passive_instance().

See the passive_instance_test module for more details about passive in-
stances.

20This term is mostly the same state term as the one on which the process dedicated to an
active instance is looping. So one could even imagine a WOOPER instance going back and
forth between an active and a passive mode of operation, if it was useful.

21 A type preferably defined that way and exported in class_Calendar.

52

Serialisation

WOOPER offers a rather complete support for serialisation and deserial-
isation, so that instances can be written to and read from a series of bytes
(this can be a WSF file, standing for WOOPER Serialisation File, a network
stream, etc.).

For that the class_Serialisable interface provides all default yet overrid-
able primitives, including:

e "serialisation hooks" (e.g. the onPreSerialisation/2 request), meant to
accommodate any class-specific transformation that shall happen prior to
each operation

e entry transformers, that are generally specific to a project but transverse
to most if not all its classes, so that values of attributes can be recursively
scanned for transient terms (like a PID, a reference), which are gener-
ally replaced with restoration markers at serialisation time, and recreated
appropriately at deserialisation time

The usual variations (e.g. deserialisations may be synchronous or not, linked
or not) of operations are supported.
Care as been taken so that these operations are done:

e generically: only the class-specific transformations are left to implement,
in well-defined hooks, with relevant helpers already available (e.g. with
examples of entry transformers)

e safely: optional checking that no transient term is still present in attribute
values that are ready for serialisation, and that no restoration marker
remains once a deserialised instance is ready

o efficiently: operations are intensely concurrent (each instance takes care
of itself as much as possible), and by default storage is done in a compact,
binary form

In practice, the Serialisable interface is defined in class_Serialisable.{hrl,erl},
and the extended features are implemented in the wooper_serialisation mod-
ule. The serialisable_test test module showcases various examples, which
involve the (serialisable) class_Reptile module.

Hot Code Update

The objective here is to be able to update classes at runtime whereas the
program is still running, and to have their instances adapt in terms of state
and behaviour to the corresponding new versions. Hot code reloading is typi-
cally useful in the case of always-available applications (never-stopping services),
where bug fixes and additional features have to be deployed in spite of the con-
tinuous operation.

WOOPER offers such features, based on the Upgradable trait, implemented
by the class _Upgradable interface.

An update protocol is proposed, with all support defined so that, for a given
class that shall be updated (i.e. whose version must be either upgraded or
downgraded):

53

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/src/interfaces/class_Upgradable.erl

1. all its instances are synchronously frozen first, to avoid that ongoing
method calls experience code discrepancies

2. then the module corresponding to that class is reloaded (possibly after
having been recompiled), being soft-purged (and possibly hard-purged if
needed)

3. then all its instances perform (concurrently) any state update that they
need in order to support the new version

In practice, for a given class (e.g. class_TestUpgradable), various ver-
sions thereof may be introduced over time (e.g. 1.2.3, then 1.2.4). Each
version of a given class is free to override the default implementations of the
upgradeVersion/4 and downgradeVersion/4 methods, as inherited from the
class_Upgradable interface, in order to account for all changes introduced be-
tween two versions (e.g. attributes being added or removed, changing types,
having their value transformed).

Refer to class Upgradable test for a full test thereof.

54

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/test/interfaces/class_Upgradable_test.erl

Miscellaneous Technical Points

Helper vs Static

In the context of a class, one may wonder what is the difference between an
exported helper function and a static method?

In terms of actual runtime evaluation, none.

In terms of source code, there is little difference: the former just has to use
the wooper:return_static/1 to terminate its clauses and, should it use a type
spec, this one should specify a return type based on return_static/1.

In terms of semantics, there are more differences: a static method is meant
to stand by itself, whether or not an instance of that class exists, and to provide
higher-level services.

On the contrary, an exported helper function is just a convenience for code-
reuse, a means of sharing code between classes. Typically it centralises code
of use by multiple methods, which often results in such an helper to have as
a parameter a State variable (preferably listed last among its parameters, for
clarity /uniformity) - whereas this cannot happen with static methods.

Calling a Method Clause from Another

Sometimes, defining a clause based on the result of another one (of the same
function) proves convenient. With methods, there are different ways to do so,
some better than others.

For example, let’s suppose we defined this (non-const) request:

-spec getPriceFor(wooper:state(),string()) ->
request_return(price()).
getPriceFor(State,ArticleStringDescription) ->
{Price,NewState} = [...some code...]
wooper :return_state_result (NewState,Price).

Now, we would like to support article descriptions being also possibly binary
strings, without having to bother introducing a new price-establishing interme-
diary function (such as the foo/2 one, below) that would be common to the
two corresponding clauses, like in:

getPriceFor(State,ArticleStringDescription) ->
when is_list(ArticleStringDescription) ->
{Price,NewState} = foo(ArticleStringDescription,State),
wooper :return_state_result(NewState,Price);

getPriceFor(State,ArticleBinDescription)
when is_binary(ArticleBinDescription) ->
{Price,NewState} = foo(binary_to_list(ArticleBinDescription),
State),
wooper :return_state_result(NewState,Price).

% Too cumbersome to define an extra function such as:

foo(ArticleStringDescription,State)->
[...some code...]

55

So our first impulse would be to write instead something like:

% (same clause)
getPriceFor(State,ArticleStringDescription) ->
when is_list(ArticleStringDescription) ->
{Price,NewState} = [...some code...]
wooper :return_state_result(NewState,Price);

% Added clause:
getPriceFor(State,ArticleBinDescription) ->
when is_binary(ArticleBinDescription) ->
getPriceFor(State,
binary_to_list(ArticleBinDescription)).

However this would not be correct, as the second clause lacks a terminator,
and WOOPER does not accept that (it might be the sign that the developer
believes he is writing an helper function).

So we would like to use wooper:return_state_result/2 for the second
clause as well, however we shall then have a state and a price to feed this
terminator. How can we obtain them from the presumably opaque term returned
by the wooper:return_state_result/2 call of the first clause?

The answer is quite simple: all WOOPER method terminators being actually
no-op, they are replaced at compilation-time by the actual terms they were
given.

So a terminator taking only a state as parameter is replaced literally by this
state (e.g. wooper:return_state(FooState) is actually FooState), while one
taking two returns a pair (e.g. wooper:return_state_result(FooState,Res)
is actually {FooState,Res}). No black magic here!

Therefore the implementation we target could be best?? written as:

% (same clause)
getPriceFor(State,ArticleStringDescription) ->
when is_list(ArticleStringDescription) ->
{Price,NewState} = [...some code...]
wooper:return_state_result(NewState,Price);

% Added clause:
getPriceFor(State,ArticleBinDescription)
when is_binary(ArticleBinDescription) ->
{NewState,Price} = getPriceFor(State,
binary_to_list(ArticleBinDescription)),
wooper :return_state_result(NewState,Price).

22yooper :executeRequest/3 could be used instead of matching the result of
wooper:return_state_result/2 and breaking its opaqueness - but (even it is a matter of
taste here) we prefer the more direct and efficient approach that was presented. Note though
that in general they do not bear the same semantics: wooper:executeRequest/3 calls a pos-
sibly overridden version of the specified method, whereas a direct call targets specifically the
class-local version of that method.

56

Integrated Call APIs
Single Calls

Calls made to passive instances require the use of a dedicated API that is
provided by the wooper module, namely:

e for requests: execute_request/{2,3} and execute_const_request/{2,3}

e for oneways: execute_oneway/{2,3} and execute_const_oneway/{2,3}

As for active instances, doing the same directly through Erlang base con-
structs (message sending and receiving) is so easy that generally no specific API
is involved - even though it exists (notably to allow for a few usage variations):

e for requests: execute_request/{2,3,4}
e for oneways: execute_oneway/{2,3}

(with active instances, constness does not need to be taken at this level)

Multi-Calls

Sometimes, in the context of active instances, it may be more convenient to
reason not in terms of single calls, but of multiple calls, with various flavours in
the number of callers, callees, method calls involved, parallelism and synchroni-
sation.

So the wooper module provides facilities in order to execute:

e agiven request sequentially on multiple callees: send_request_in_turn/3
or, if wanting that a time-out applies, send_request_in_turn/4

e the same for a oneway sending (off-band, through a direct message send-
ing) a user-specified acknowledgement term (e.g. a conventional atom):
send_acknowledged_oneway_in_turn/5

e a given request, whose only result in a user-specified acknowledgement
term, in parallel on multiple callees: send_requests_and_wait_acks/4
or, if wanting that a time-out applies, send_requests_and_wait_acks/5

e a given request in parallel on multiple callees, obtaining back an un-
ordered list of their results: obtain_results_for_requests/3

e a series of requests on a single callee: send_request_series/2 (just
for the sending) and obtain_results_for_request_series/2 (to include
also the collecting of their ordered results)

Many more flavours can be considered (e.g. for active/passive instances,
requests or oneways, with or without time-out, synchronisable or not, etc.) and
may be supported in the future, on a per-need basis.

However it may be more convenient to compose any extra multi-call that
is needed thanks to the various basic helpers that are provided in the wooper
module in order to send calls or to collect their results. Doing so allows for
example to perform interleaving (triggering concurrent calls as soon as possible,
collecting their results as late as possible) and maximise the overall parallelism.

57

Methods Not Returning Anything of Interest

Not all functions or static methods (or even requests) are pure, and sometimes
only the side-effects of their execution are of interest, in which case nothing
relevant may have to be returned??.

For such needs, our Myriad base layer introduced the opaque pseudo-builtin
type void() (nothing fancy), which is to be used by WOOPER methods as well.

Should one need a value of the void/0 type, we recommend using the void
atom.

As a result (pun!), one may define:

-spec stop() -> static_return(void()).
stop() ->

[...]1 % Do some side-effects

wooper :return_static(void).

Introducing specific method terminators to convey that meaning would have
been possible, yet multiplying the syntactical constructs would probably hurt
the terseness of the underlying language.

However, as, fairly frequently, static methods have nothing meaningful to
return, the wooper:return_static_void/0 method terminator and its spec-
level counterpart static_void_return() type have been introduced??.

Methods Not Returning

Some static methods may not return (see class_Serialisable:deserialise/4
for an example thereof).

Then their type specification shall use static_no_return() and each of
their clause shall end with wooper:no_return_static().

Exception-Throwing Methods

A clause of a method may simply always throw an exception, and
WOOPER will manage it automatically if possible.

More precisely, such a clause is considered licit yet not giving informa-
tion about the method type. So, should there be other, non-throwing clauses,
WOOPER will still be able to identify the nature of the method.

Otherwise (all clauses always throw), the class developer will have to give a
hint about the actual nature of that function - thanks to a type specification.

For example, if defining the API of an abstract class (say, an AbstractShape
class) whereas, for a given method signature (e.g. getArea/1), there is no
meaningful default implementation, one may for example write:

2380, why one use a request instead of a oneway then? One reason is synchronisation, so
that the caller code can block until the request has completed. Nevertheless for that use case
we recommend that such a request returns a conventional, self-describing, preferably unique
atom, such as foobar_server_stopped. We will focus here mostly on the static methods that
would have no meaningful value to return.

24This method terminator is replaced at compilation-time by a no-op, thus the static
method returns actually the previous expression - unless there is none, in which case the
wooper_void_return atom is returned (the caller is not expected to match a void result any-
way).

58

http://myriad.esperide.org

getArea(_State) ->
% For an abstract shape, no possible definition;
% so catching any child class not overriding it,
% thanks to:
%

throw(not_overridden) .

However, from the point of view of WOOPER, getArea/1, short of using any
method terminator, can be of any nature (for example a method or an helper
function). WOOPER will then request the developer to clarify this ambiguity
by adding a type spec, such as:

-spec getArea(wooper:state()) -> const_request_return(area()).

This will be sufficient for WOOPER.

In other related cases, it may be convenient instead to centralise the man-
agement of a range of failures in specific helper functions that always throw
(such a function never returns), like in:

manage_foobar_failure(X,Y) ->
[...]
throw({foobar_failed,{X,Y}}).

Writing a method relying on such an helper function could be:

doSomething(State,A) ->
case foobar(A,State) of

{value,Result} ->
wooper:const_return_result(Result);

{error,Error} ->
manage_foobar_failure(A,Error)

end.

The problem is that this call to manage_foobar_failure/2 does not include
a method terminator, and thus this branch would be, from the WOOPER point
of view, the one of an helper function, thus clashing with the other branches
(here telling it is a const request).

A solution could be to write instead:

[...]
{error,Error} ->
Dummy = manage_foobar_failure(A,Error),
wooper:const_return_result (Dummy)

but that resulting code would not be that satisfactory (a bit ugly, not so

readable).
So, instead, WOOPER introduced the throwing/1 method terminator, al-

lowing the following, clearer, more elegant, code:

59

{error,Error} ->
wooper :throwing(manage_foobar_failure(A,Error))

delete_any_instance_referenced_in/2

When an attribute contains either a single instance reference (i.e. the PID of the
corresponding process) or a list of instance references, this WOOPER-defined
helper function will automatically delete (asynchronously) these instances, and
will return an updated state in which this attribute is set to undefined.

This function is especially useful in destructors.

For example, if State contains:

e an attribute named my_pid whose value is the PID of an instance

e and also an attribute named my_pids containing a list of PID instances

and if the instance at hand that shall be deleted took ownership of these
instances, then:

delete(State) ->
TempState = wooper:delete_any_instance_referenced_in(State,my_pid),
wooper:delete_any_instance_referenced_in(TempState,my_pids) .

will automatically delete all these instances (if any) and return an updated
state.

Then the destructors of the mother classes can be chained by WOOPER.

See also the various other helpers defined in wooper.erl.

EXIT Signals / Messages

A class instance may (if trapping EXIT signals) receive EXIT messages from
other processes.
A given class can process these EXIT notifications:

e cither by defining and exporting the onWOOPERExitReceived/3 oneway
e or by inheriting it

For example:

-spec onWOOPERExitReceived(wooper:state(),basic_utils:pid_or_port(),
basic_utils:exit_reason()) -> const_oneway_return().
onWOOPERExitReceived(State,Pid0rPort,ExitReason) ->
io:format("MyClass EXIT handler ignored signal ’>"p’ "
"from “w. n", [ExitReason,PidOrPort]),
wooper:const_return() .

may result in an output like:

MyClass EXIT handler ignored signal ’normal’ from <0.40.0>.

60

If no class-level onWOOPERExitReceived/3 oneway is available, the default
WOOPER EXIT handler (namely wooper:default_exit_handler/3) will be
used (it just performs console-based notification).

It will just notify the signal to the user, by displaying a message like:

WOOPER default EXIT handler for instance <0.36.0> of class class_Cat
ignored signal ’normal’ from <0.40.0>.

DOWN Messages for Process Monitors

A class instance may receive DOWN messages from other (monitored) processes.
A given class can process these DOWN notifications:

e cither by defining and exporting the onWOOPERDownNotified/5 oneway
e or by inheriting it

If no class-level onWOOPERDownNotified/5 oneway is available, the default
WOOPER DOWN handler (namely wooper :default_down_handler/5) will be
used (it just performs console-based notification).

Note that DOWN messages shall not be mixed up with the nodedown messages
of the next section.

Node Monitors

Quite similarly to EXIT messages, node monitors and nodeup / nodedown mes-
sages are also managed by WOOPER, see the onWOOPERNodeConnection/3 and
onWOOPERNodeDisconnection/3 oneways.

Should these oneways be not available for the class at hand, the default
WOOPER node handlers (namely wooper:default_node_up_handler/3 and
default_node_down_handler/3 respectively) will be used (they just perform
console-based notifications).

Note that nodedown messages shall not be mixed up with the DOWN messages
of the previous section.

A bit of Introspection

Here are the class-level information that can be fetched from the name of a class
(as a result they are static methods):

e get_superclasses/0 will return the (ordered) list of the declared direct
mother classes of this class

e get_class_specific_attributes/0 will return the (in-order) list of de-
clared class-specific attribute metadata, as a list of wooper_info:attribute_info/0
records, containing, for a given attribute: its name, type, qualifiers and
textual description

For example:

class_Platypus:get_superclasses().
[class_Mammal,class_0OvoviviparousBeing]

61

When having at hand the state of an instance (so either from its methods
and/or for a passive instance), various helpers in the wooper module can be
used (e.g. get_classname/1, get_all_superclasses/1, is_instance_of/2,
check_instance_of/2, get_attribute_pairs/1, state_to_string/1, get_class_filename/1).
They are mostly intended for testing, as a good OOP design generally does not
rely on such primitives.

Developer Guidelines
General Guidelines

All WOOPER classes must include wooper.hrl:

-include("wooper.hrl").

Note

This include should come, in the source file of a class, after all
WOOPER-related defines (such as superclasses, class_attributes,
etc.).

To help declaring the right defines in the right order, using the WOOPER
template is recommended.

One may also have a look at the full test examples, as a source of inspiration.

For examples of re-use of WOOPER, by upper layers, one may refer to
Ceylan-Traces, to US-Web or to the Sim-Diasca simulation engine.

OTP Guidelines

For server-like activities, it may be useful to have instances of WOOPER classes
(e.g. class_Foobar) behave like OTP workers in supervision trees.

Exactly like by default any Erlang process is not able to readily take part
to an OTP supervision tree?®, a WOOPER instance must specifically support
such an integration.

A supervisor bridge (i.e. a process in charge of integrating properly such a
non-OTP process into an OTP supervision tree) is the tool of choice here?°.

Rather than declaring the corresponding behaviour and its implemented
API directly in the target class (e.g. in class_Foobar), we recommend for
clarity (as, even if the bridge was declared in the same module, it would be
still an intermediate, autonomous process sitting between the OTP supervisor

25For that, such process has to comply with a relevant applicative protocol in order to
properly interact with its supervisor, either directly by itself or through its implementation of
a worker-compliant OTP behaviour like gen server.

26 Otherwise, as we understand it, should WOOPER instances be directly declared in a
supervision tree as mere workers, they would have to implement typically the gen_server
behaviour, which implies relying on handle_{call,cast,info} functions and on a behaviour-
specific main loop - rather than on the counterpart method-based facilities offered by
WOOPER.

A consequence is the need for an extra, mostly idle process sitting between such a supervised
WOOPER instance and its supervisor. In some cases (e.g. a webserver processing each
request based on a WOOPER instance), this overhead would be excessive; then defining a
WOOPER-specific supervisor, able to handle directly its WOOPER instances as workers,
could be devised.

62

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_WOOPERTemplate.erl.sample
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples
http://traces.esperide.org
http://us-web.esperide.org
http://sim-diasca.com
https://erlang.org/doc/man/supervisor_bridge.html
https://erlang.org/doc/man/gen_server.html

and the WOOPER instance of interest) and for separation of concerns (leav-
ing an OTP integration as an optional feature) to introduce a specific module
for that, like done with traces bridge sup for class TraceAggregator.erl or
us_common__config bridge sup for class USConfigServer.erl.

However, when the purpose of a given class is solely to integrate within an
OTP application through a supervision tree, one may of course have the bridge
directly defined in the WOOPER class the interfacing of which it is enabling;
see class USSensorManager.erl for an example thereof.

In all cases, following the aforementioned us _common config bridge sup
simple example, the additions mostly boil down to, in a relevant module as
discussed above:

e declaring the corresponding OTP behaviour, the exported functions that
this implies, and any relevant define, like in:

-behaviour (supervisor_bridge) .

% User API of the bridge (can be arbitrarily chosen, including of course the arity):
-export([start_link/2]).

% Callbacks of the supervisor_bridge behaviour:
-export([init/1, terminate/2]).

-define(bridge_name, 7MODULE).
e implementing how the bridge shall be spawned by the user, like in:

start_link(X,Y) ->
Z=£(X),
% Supposing here that a local registration of the bridge is wanted:
supervisor_bridge:start_link({local, ?bridge_namel},
_Module=7MODULE, _InitArgs=[Y,hello,Z]).

e implementing what the bridge shall do in terms of initialisation once
spawned (notably regarding the WOOPER instance that it interfaces),
like in:

-spec init(list()) -> { ’ok’, pid(), BridgeState :: term()}
| ’ignore’ | {’error’, Error :: term()}.
init(_Args=[_A, Atom, B]) ->
% No synchronous creation supposed useful here:
MyFoobarInstancePid = class_Foobar:new_link(Atom,B),

InitialBridgeState = {MyFoobarInstancePid, Atom},

{ok, MyFoobarInstancePid, InitialBridgeStatel}.
e do the same regarding termination, like in:

terminate(Reason, _BridgeState={FoobarPid, _Atom}) ->
% No synchronicity especially needed:
FoobarPid ! delete.

63

https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/traces_bridge_sup.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/class_TraceAggregator.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/us_common_config_bridge_sup.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USConfigServer.erl
https://github.com/Olivier-Boudeville/us-main/blob/master/src/class_USSensorManager.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/us_common_config_bridge_sup.erl

Of course:

e any user API and bridge state can be elected, but the supervisor bridge
behaviour requires init/1 and terminate/2 to be defined with these ar-
ities and to return the terms documented

e the various functions introduced here could be defined as static meth-
ods instead, but maybe such exported plain functions will be clearer for
developers with an OTP background

e spawned processes must be linked, so that crashes do not remain unnoticed

e we recommend to add type specs and relevant traces in actual code

WOOPER API

One can browse the WOOPER, API documentation. WOOPER being, in some
way, a dialect deriving from Erlang (hence closer to a language of its own than
to a pure library), such an API documentation is most probably less useful than
counterpart ones made for libraries like Myriad.

The next level of information is simply to read the corresponding source files,
which are intensely commented and generally straightforward.

Class Developer Cheat Sheet

When specifying a class: -module(class_Foobar).
Any description thereof: -define(class_description,"Class for...").
When specifying its superclasses: -define(superclasses, [A,B]).

When specifying its class attributes: -define(class_attributes, [ATTR1,ATTR2, ..

A given ATTRn may be one of:

{Name,Type,QualifierInfo,Description}
e {Name,Type,Description}
e {Name,Description}

e Name

QualifierInfo can be, for example, public, or [private,const].

All member methods have State for initial parameter, and are expected to
return at least a (possibly const) state.

When defining a request:

e its spec should rely, for its return type, either on request_return(T())
or on const_request_return(T())

e cach of its clause should terminate with either wooper:return_state_result(S,R)
or wooper:const_return_result(R)

When defining a oneway:

e its spec should rely, for its return type, either on oneway_return() or on
const_oneway_return()

64

D

https://erlang.org/doc/man/supervisor_bridge.html#Module:init-1
https://erlang.org/doc/man/supervisor_bridge.html#Module:init-1
api-doc/index.html
https://myriad.esperide.org/api-doc/index.html
https://github.com/Olivier-Boudeville/Ceylan-WOOPER

e cach of its clause should terminate with either wooper:return_state(S)
or wooper:const_return()

When defining a static method:

e its spec should rely, for its return type, either on static_return(T())
or on static_void_return()

e cach of its clause should terminate with wooper:return_static(R) or
with wooper:return_static_void()

Finding it difficult not to mix the keywords for spec return types (e.g.

request_return/1) and method terminators (e.g. wooper:return_state_result/2)?

A mnemonic could be that a spec return type designates a returned term
(hence for example a request_return/1 - more generally such types always end
with _return) whereas a method terminator designates an action (returning a
state and a result, hence to wooper:return_state_result/2 for example).

Source Editors

We use Emacs but of course any editor will be fine.

For Nedit users, a WOOPER-aware nedit.rc configuration file for syntax
highlighting (on black backgrounds), inspired from Daniel Solaz’s Erlang Nedit
mode, is available.

Similarity With Other Languages

WOOPER is in some ways adding features quite similar to the ones available
with other languages, including Python (simple multiple inheritance, implied
self/State parameter, attribute dictionaries/associative tables, etc.) while
still offering the major strengths of Erlang (concurrency, distribution, functional
paradigm) and not hurting too much the overall performances (mainly thanks
to the prebuilt attribute and method tables).

WOOPER limitations

Actually no significant implementation shortcoming has been identified.
The main limitations that existed beforehand were (from the most recently
alleviated to the earlier ones):

e the per-instance memory footprint has been reduced by sharing the "vir-

tual table" of a given class between all its instances, thanks to persistent_term

e the efficiency of the per-instance associative table to store the attribute
values has been improved by switching from our hashtable implementation
to a map-based one

e the macro-based constructor declarations were too cumbersome and lim-
iting (e.g. a single constructor per class was supported); this is fully
addressed thanks to the WOOPER parse transform now

65

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/conf/nedit.rc
http://www.trapexit.org/forum/viewtopic.php?p=30189
http://www.trapexit.org/forum/viewtopic.php?p=30189

We expect the now default JIT compilation to benefit a lot to WOOPER,
with no change having to be operated at its level.

As always, there is certainly room for improvement, to grind a bit more run-
time performances and/or to further reduce the per-instance memory footprint.
Profiling actions welcome!

66

WOOPER Example

We defined a small set of classes in order to serve as an example and demonstrate
multiple inheritance:

Creature
#age: Age = 0
#gender: Gender O i f
voviviparousBeing
. . +Creature(in age:Age=0,1in gender:Gender)

ViviparousBeing +getAge(): Age #eqgsLaidCount: Number = 0
#birthGivenCount: Mumber = @ +declareBirthday () +0voviviparousBeing ()
-+ViviparousBeing() +isHotBlooded(}: bool +<<static>> GetWeanEggsCount(): Number
+<<static>> GetMeanChildrenCount(): Number +canEat(in foodType:FoodType): bool +getEggslaidCount(): Number
+getBirthGivenCount(): Number +LayEggs (in Numbe rOfNewEggs:Number=50)
+giveBirth(in Number0fNewChildren: Number=1) A

Mammal

Reptile

#furColor: Color
+Mammal(in age:Age=0,1in gender:Gender,in furColor:Color) +Reptile(in age:Age=0,1n gender:Gender)
+isHotBlooded(): bool +isHotBlooded (): bool

+getTeatcount() : Number +canMoult(]): bool

f

Cat Platypus
#whiskercolor: Color #nozzleColor: Color
+Cat(in age:Age=0,1in gender:Gender.in furColor:Coler, +Platypus(in age:Age=0,in gender:Gender,
in wglskeranlnr:Cnlnrﬁwmte) ” in fEr‘Cn%nr:Cnln?‘:brnwan nozzleColor:Color=black)
+getTeatCount (): Number +getTeatCount(): MNumber
+canfat(in foodType: FoodType): bool +caneat(in foodType: FoodType): bool

Class implementations

e class Creature.erl

e class ViviparousBeing.erl

e class_OvoviviparousBeing.erl
e class Mammal.erl

e class_Reptile.erl

e class Cat.erl

class Platypus.erl

Tests
Here are a few examples of tests:
o class Creature test.erl
e class ViviparousBeing test.erl
e class OvoviviparousBeing test.erl
e class Mammal test.erl

o class Reptile test.erl

67

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Creature.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_ViviparousBeing.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_OvoviviparousBeing.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Mammal.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Reptile.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Cat.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Platypus.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Creature_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_ViviparousBeing_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_OvoviviparousBeing_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Mammal_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Reptile_test.erl

e class Cat_test.erl

e class Platypus_test.erl

To run a test (e.g. class_Cat_test.erl), when WOOPER has already
been compiled, one just has to enter, from the corresponding directory: make
class_Cat_run.

68

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Cat_test.erl
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/tree/master/priv/examples/class_Platypus_test.erl

Good Practices

When using WOOPER, the following conventions are deemed useful to respect
(even if they are not mandatory).

No warning should be tolerated in code using WOOPER, as we never found
useless notifications.

All attributes of an instance should better be defined from the construc-
tor, instead of being dynamically added during the life of the instance; otherwise
the methods would have to deal with some attributes that may, or may not, be
defined; if no proper value exists for an attribute at the creation of an instance,
then its value should just be set to the atom undefined; its type should then
go from T() to maybe(TQ)).

Class-specific attributes should be specified (using the class_attributes
define), as doing so brings up much useful information to the developer/maintainer.

Type specifications should be used for at least most non-internal functions
(such as constructors, methods, etc.).

There are always welcome, and in some corner cases they are also needed by
WOOPER in order to discriminate between equally possible cases (see Exception-
Throwing Methods for more information).

The naming conventions (e.g. CamelCase / snake_case) shall be re-
spected; notably, helper functions and static methods (which, from an Erlang
point of view, are mostly just exported functions) should be named like C func-
tions, in snake_case (e.g. compute_sum) rather than being written in Camel-
Case (e.g. no helper function should be named computeSum), to avoid mixing
up these different kinds of code.

To further separate helper functions from instance methods, an helper func-
tion taking a State parameter should better place it at the end of its parameter
list rather than in first position (e.g. compute_sum(X,Y,State) rather than
compute_sum(State,X,Y)).

In a method body, the various state variables being introduced should be
properly named, i.e. their name should start with a self-documenting prefix fol-
lowed by the State suffix, like in: SeededState=setAttribute(State,seed,{1,7,11}).

Some more general (mostly unrelated) Erlang-level conventions that we
like:

e when, in code, more than one parameter is specified in a function signa-
ture, parameter names can be surrounded by spaces (e.g. £(Color), or
g(Age, Height))

e functions should be separated by (at least) three newlines, whereas clauses
for a given function should be separated by one or two newlines, depending
on their size

e to auto-document parameters, a "mute" variable is preferably to be used:
for example, instead of £(Color, true) use f(Color, _Dither=true
); however note that (unfortunately) these mute variables are still bound
and thus pattern-matched: for example, if multiple _Dither mute vari-
ables are bound in the same scope to different values, a bad match will be
triggered at runtime.

69

Supported Platforms

WOOPER can be readily built and run on most Unices (including of course
GNU/Linux) and on Windows.
Refer to the Myriad counterpart section for more details.

Troubleshooting

Debug Mode

We recommend that, as a WOOPER user, one enables its debug mode when
developing (ensure in GNUmakevars.inc that ENABLE_DEBUG has been set to
true - which is the case by default), as it may catch various user errors more
easily (not only WOOPER-internal errors, but also, and most importantly, any
user-originating mistake).

Then only, once one’s code is mature enough, this debug mode may be
disabled in order to obtain best performances.

"No attribute declaration found" whereas a class_attributes
define exists

Most probably that your ~-define(class_attributes, [...]). define happens
after the WOOPER header include.
The correct order is:

-define(class_attributes, [

ATTR_DECL1,

ATTR_DECL2,

[...]

ATTR_DECLN]) .
[...]
-include("wooper.hrl").
[...]

Compilation Error Pointing to wooper_for_classes.hrl

As the comment in wooper_get_class_attributes/0 (in said header file) hints,
the class_attributes define in the class at hand is most probably incorrect
(syntax error).

The compilation error message should help; if it is syntax error before:
> | 7, a union type for an attribute must have been defined with |, instead of with
the union variadic pseudo-operator. See the section about attribute declaration
for more details.

General Case
Compilation Warnings

A basic rule of thumb in all languages is to enable all warnings and eradicate
them before even trying to test a program.

70

http://myriad.esperide.org/#supported-platforms

This is still more valid when using WOOPER, whose proper use should never
result in any warning being issued by the compiler.

Notably warnings about unused variables are precious in order to catch mis-
takes when state variables are not being properly taken care of (e.g. when a
state is defined but never re-used later).

Runtime Errors

Most errors while using WOOPER should result in relatively clear messages
(e.g. wooper_method_failed or wooper_method_faulty_return), associated
with all relevant runtime information that was available to WOOPER, including
context and stacktrace.

Another way of overcoming WOOPER issues is to activate the debug mode
for all WOOPER-enabled compiled modules (e.g. uncomment -define (wooper_debug_mode,) .
in wooper.hrl or, preferably, ensure in GNUmakevars.inc that ENABLE_DEBUG
has been set to true), and recompile your classes.

The debug mode tries to perform extensive checking on all WOOPER entry
points, from incoming messages to the user class itself, catching mistakes from
the class developer as well as from the class user.

For example, the validity of states returned by a constructor, by each method
and by the destructor is checked, as the one of states specified to the execute*
constructs.

If it is not enough to clear things up, an additional step can be to add,
on a per-class basis (e.g. in class_Cat.erl), before the WOOPER include,
-define(wooper_log_wanted,) ..

Then all incoming method calls will be traced, for easier debugging. It is
seldom necessary to go till this level of detail.

As there are a few common WOOPER gotchas though, the main ones are
listed below.

Mismatches In Method Call

Oneway Versus Request Calls One of these gotchas - experienced even
by the WOOPER author - is to define a two-parameter oneway, whose second
parameter is a PID, and to call this method wrongly as a request, instead of as
a oneway.

For example, let’s suppose the class_Dog class defines the oneway method
startBarkingAt/3 as:

startBarkingAt (State,Duration,ListenerPID) -> ...
The correct approach to call this oneway would be:

MyDogPid ! {startBarkingAt, [MyDuration,self()]}
An absent-minded developer could have written instead:

MyDogPid ! {startBarkingAt,MyDuration,self()}

71

This would have called a request method startBarkingAt/2 (which could
have been for example startBarkingAt (State,TerminationOffset) -> ...,
the PID being interpreted by WOOPER as the request sender PID), a method
that most probably does not even exist.

This would result in a bit obscure error message like:

Error in process <0.43.0> on node ’XXXX’ with exit value:
{badarg, [{class_Dog,wooper_main_loop,1}]}.

List Parameter Incorrectly Specified In Call As explained in the
Method Parameters section, if a method takes only one parameter and if this
parameter is a list, then in a call this parameter cannot be specified as a stan-
dalone one: a parameter list with only one element, this parameter, should be
used instead.

Error With Exit Value: {undef, [{map_hashtable,new,[..]}.. Youmost
probably forgot to build the myriad directory that contains, among other mod-
ules, the map_hashtable.erl source file.

Check that you have a map_hashtable.bean file indeed, and that it can be
found from the paths specified to the virtual machine.

Note that the WOOPER code designates this module as the table one (e.g.
table:new()), for a better substituability (this is obtained thanks to a parse-
transform provided by Ceylan-Myriad) .

72

Current Stable Version & Download

Prerequisites

This OOP layer, Ceylan-WOOPER, relies (only) on:

e Erlang

e the Ceylan-Myriad base layer

We prefer using GNU/Linux, sticking to the latest stable release of Erlang,
and building it from sources, thanks to GNU make.

Refer to the corresponding Myriad prerequisite section for more precise
guidelines, knowing that Ceylan-WOOPER does not need modules with condi-
tional support such as crypto or wx.

Using Cutting-Edge GIT

This is the installation method that we use and recommend; the WOOPER
master branch is meant to stick to the latest stable version: we try to ensure
that this main line always stays functional (sorry for the pun). Evolutions are
to take place in feature branches and to be merged only when ready.

As a result, once a proper Erlang version is available, the Ceylan-Myriad
repository should be cloned and built, before doing the same with the Ceylan-
WOOPER repository, like in:

$ git clone https://github.com/0livier-Boudeville/Ceylan-Myriad myriad
$ cd myriad && make all && cd ..

$ git clone https://github.com/0livier-Boudeville/Ceylan-WOOPER wooper
$ cd wooper && make all

Using OTP-Related Build/Runtime Conventions

Note

Over the years, we slowly migrated from our custom, make-based build
to integrate more closely to the OTP ecosystem (using applications,
releases; then rebar3, hex). Only mixed results were obtained (opera-
tions were slower, more complex, more fragile, and not always suitable
for "complex" builds involving parse transforms). So, at least for the
moment, we prefer mostly relying on our custom build system (still sup-
porting OTP conventions) and experience no drawback.

As discussed for Myriad, we added the (optional) possibility of generating
a WOOPER OTP application out of the build tree (obtained thanks to the
method described in the previous section), ready to be integrated into an (OTP)
release. For that we rely on rebar3, relx and hex.

OTP conventions mandate using:

-include_lib("wooper/include/wooper.hrl") .

73

http://www.erlang.org/
http://myriad.esperide.org
http://myriad.esperide.org#prerequisites
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
http://myriad.esperide.org/myriad.html#otp
https://www.rebar3.org/
https://github.com/erlware/relx
https://hex.pm/

rather than:
-include("wooper.hrl").

Unlike Myriad, which is an OTP library application, WOOPER is an OTP
active application, meaning the reliance on an application that can be started /stopped
(wooper_app), a root supervisor (wooper_sup) and a class manager that is a
background server process (gen_server) in a supervision tree.

Note

By the way, why are the WOOPER instances not more tightly inte-
grated within the OTP framework? The most natural match would be
to have them implement as well the gen_server behaviour - yet this
would involve non-negligible overhead in terms of additional messages
exchanges and function calls, and the API would not as pleasant as the
current form (requests would have to be aggregated in handle_call/3,
oneways in handle_cast/2, etc.).

Using Rebar3

Note

In a nutshell: the usual rebar3 machinery is in place and functional, so
the only WOOPER prerequisite (Myriad) and WOOPER itself can be
obtained simply thanks to:

$ git clone https://github.com/0Olivier-Boudeville/Ceylan-WOOPER.git wooper

$ cd wooper

$ rebar3 compile
Then WOOPER and its tests shall be ready for a successful execution.
Note that rebar3 is an alternate way of building WOOPER, as one may
rely directly on our make-based system instead.

The same procedures as explained for Myriad apply, once rebar3 is available:

$ make rebar3-application
$ make rebar3-release

More precisely, to test the WOOPER OTP application support, provided
that make rebar3-compile was issued beforehand, one can run from the root
of the WOOPER source tree:

$ cd test
$ make wooper_otp_application_run
Running unitary test wooper_otp_application_run (third form)
from wooper_otp_application_test

--> Testing module wooper_otp_application_test.

Starting the WOOPER application.
[debug] Starting WOOPER application (type: normal, start arguments: []).

74

https://myriad.esperide.org
http://myriad.esperide.org/myriad.html#otp

[debug] Starting the WOOPER root supervisor.

[debug] Initializing the WOOPER root supervisor (args: []).
[debug] Starting and linking the WOOPER class manager.
[debug] WOOPER class manager created, as <0.87.0>.

WOOPER version: {2,0,5%}.

Class filename corresponding to ’class_Tiger’: ’class_Tiger.erl’.

Stopping the WOOPER application.
[debug] Stopping WOOPER application (state: []).
Successful end of test of the WOOPER application.
=INFO REPORT==== 19-Jul-2019::22:53:28.243821 ===
application: wooper
exited: stopped
type: temporary
=INFO REPORT==== 19-Jul-2019::22:53:28.260437 ===
application: myriad
exited: stopped
type: temporary

--> Successful end of test.

(test finished, interpreter halted)

One may run make create-wooper-checkout in order to create, based on
our conventions, a suitable _checkouts directory so that rebar3 can directly
take into account local, directly available (in-development) dependencies (here,
only Myriad).

Using Hex

Hex packages for WOOPER used to be published for most versions, yet finally
our workflow does not rely on Hex, so we do not update the Hex packages
anymore. Just drop us an email if needing a recent one.

For more details, one may have a look at:

e rebar.config.template, the general rebar configuration file used when gener-
ating the WOOPER, OTP application and release (implying the automatic
management of Myriad)

e rebar-for-hex.config.template, to generate a corresponding Hex package
for WOOPER (whose structure and conventions is quite different from
the previous OTP elements)

e rebar-for-testing.config.template, the simplest test of the previous Hex
package: an empty rebar project having for sole dependency that Hex
package

Testing WOOPER

Once Myriad and WOOPER itself have been built (for that refer to either
Using Cutting-Edge GIT or Using Rebar3), just run from the root directory of
WOOPER:

75

https://hex.pm/packages/wooper
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/conf/rebar.config.template
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/conf/rebar-for-hex.config.template
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/conf/rebar-for-testing.config.template
https://myriad.esperide.org

$ make test

The testing shall complete successfully (if it is not the case, see our support
section).

Note

WOOPER is built and tested at each commit through continuous inte-
gration, and the same holds for its only prerequisite (Myriad). Recip-
rocally this procedure applies to the projects based on it, directly (e.g.
Traces) or not (e.g. US-Web), so in terms of usability, confidence should
be high.

76

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/actions?query=workflow%3A%22Erlang+CI%22
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/actions?query=workflow%3A%22Erlang+CI%22
https://myriad.esperide.org
https://traces.esperide.org/
https://us-web.esperide.org/

Version History & Changes

Version 2.0 [current stable]

Released officially on Sunday, February 3, 2019 initially, and consistently im-
proved since then.
It has been a large rewriting of this layer, with much improvements notably:

e multiple different-arity constructors per class are supported now

e 1o more wooper_construct_parameters, longer wooper_construct_export

or wooper_construct_export defines

e automatic detection and export of constructors, any destructor and meth-
ods

e WOOPER method terminators introduced (e.g. wooper:return_state_result/2,

instead of the wooper_return_state_result macro)

e the class_attributes optional parse attribute define introduced (-define(class_attributes, [...]

e executexWith renamed as executexAs (clearer)

e convenience method wrappers such as wooper:execute_request/3 have
their parameters reordered (target - either a PID or a passive instance -
comes first now)

e passive instances supported (still a bit experimental, not used a lot, yet
working)

More generally, many macros and definitions in the WOOPER header files
moved to code generated thanks to a parse-transform.

Although this version does not share any code with the various experiments
and candidate 2.0 versions that had been previously developed (thanks at least
to Ulf and Nicolas in 2010, and to Enrique and Roland in 2013, both operating at
that time on the so-called Zero-Overhead WOOPER version), these preliminary
works surely helped defining the API that we deem suitable now, and that we
implemented in the current version.

Version 1.x

Since 2016 we switched back to a "rolling version", not really defining specific
release milestones.

Many minor improvements integrated, API enriched in a backward compat-
ible manner.

These versions have been pretty stable very soon, and did the job for nearly
a decade (2008-2018), during which various attempts of radical improvements
were performed.

7

Version 1.0

Countless improvements have been integrated in the course of the use of WOOPER,
which has been now been stable for years.

The main change since the 0.4 version is the use of the newly-introduced
map Erlang datatype, resulting in the hashtable module being replaced by
the map_hashtable. They obey to the same API and the table pseudo-
type abstracts out the actual choice in that matter (it is transparently parse-
transformed into the currently-retained datatype).

Version 0.4

It is mainly a BFO (Bug Fizes Only) version, as functional coverage is pretty
complete already.
Main changes are:

e debug mode enhanced a lot: many checkings are made at all fronteers
between WOOPER and either the user code (messages) or the class code
(constructors, methods, destructor, execute requests); user-friendly ex-
plicit error messages are displayed instead of raw errors in most cases;
is_record used to better detect when an expected state is not properly
returned

e wooper_result not appended any more to method returns in debug mode
e release mode tested and fixed

e exit replaced by throw, use of newer and better try/catch instead of
mere catch

e destructor chained calls properly fixed this time

e delete_any_instance_referenced_in/2 added, wooper:return_state_x*
macros simplified, remote_* bug fixed

Version 0.3

Released on Wednesday, March 25, 2009.
Main changes are:

e destructors are automatically chained as appropriate, and they can be
overridden at will

e incoming EXIT messages are caught by a default WOOPER handler which
can be overridden on a per-class basis by the user-specified onWOOPERExitReceived/3
method

e direct method invocation supported, thanks to the executeRequest and
executeOneway constructs, and wooper_result no more appended to the
result tuple

e synchronous spawn operations added or improved: synchronous_new/synchronous_new_link
and al; corresponding template updated

78

state management enriched: popFromAttribute added
all new variations on remote nodes improved or added

major update of the documentation

Version 0.2

Released on Friday, December 21, 2007. Still fully functional!
Main changes are:

the sender PID is made available to requests in the instance state variable
(see request_sender member, used automatically by the getSender/0
macro)

runtime errors better identified and notified

macros for attribute management added, existing ones more robust and
faster

fixed a potential race condition when two callers request nearly at the
same time the WOOPER class manager (previous mechanism worked,
class manager was a singleton indeed, but second caller was not notified)

improved build (Emakefile generated), comments, error output
test template added

documentation updated

Version 0.1

Released on Sunday, July 22, 2007. Already fully functional!

79

WOOPER Inner Workings

General Principles
Understanding Compilation

WOOPER is the second level of a software stack beginning with Erlang and
then Myriad.

If the initial versions of WOOPER were mostly based on macros and headers,
newer ones rely on the Erlang way of doing metaprogramming, namely parse-
transforms.

More precisely, the sources of a user-defined class are transformed by the
standard Erlang toolchain (erlc compiler) into an AST (Abstract Syntax Tree),
which is first transformed by WOOPER (e.g. to generate the new operators, to
export any destructor, etc.) and then by Myriad (e.g. to support newer types
such as void/0, maybe/1 or table/2), which also provides much of the AST
transformation support.

Understanding the Mode of Operation of a WOOPER Instance

Each instance runs a main loop (wooper_main_loop/1, defined in wooper.hrl)
that keeps its internal state and, through a blocking receive, serves the meth-
ods as specified by incoming messages, quite similarly to a classical server that
loops on an updated state, like in:

my_server (State) ->
receive
{command, {M,P}} ->
NewState = execute_command(State,M,P),
my_server (NewState)
end.

In each instance, WOOPER manages the tail-recursive infinite surrounding
loop, State corresponding to the (private) state of the instance, and execute_command (State,M,P)
corresponding to the WOOPER logic that triggers the user-defined method M
with the current state (State) and the specified parameters (P), and that may
return a result.
The per-instance kept state is twofold, in the sense that it contains two asso-
ciative tables, one to route method calls and one to store the instance attributes,
as explained below.

Method Virtual Table

General Principle

This associative table allows, for a given class, to determine which module im-
plements actually each supported method.

For example, all instances of class_Cat have to know that their getWhiskerColor/1
method is defined directly in that class, as opposed to their setAge/2 method
whose actual implementation is to be found, say, in class_Mammal, should this
class have overridden it from class_Creature.

80

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/include/wooper.hrl

As performing a method look-up through the entire inheritance graph at
each call would waste resources, the look-up is precomputed for each class.

Indeed a per-class table is built at runtime, on the first creation of an instance
of this class, and stored by the unique (singleton) WOOPER class manager that
shares it to all the class instances.

This manager is itself spawned the first time it is needed, and stays ready
for all instances of various classes being created (it uses a table to associate to
each class its specific virtual table).

This per-class method table has for keys the known method names (atoms)
for this class, associated to the values being the most specialised module, in the
inheritance graph, that defines that method.

Hence each instance has a reference to a shared table that allows for a direct
method look-up.

As the table is built only once and is theoritically shared by all instances of
that class®’, it adds very little overhead, space-wise and time-wise. Thanks to
the table, method look-up is expected to be quite efficient too (constant-time).

Taking class Platypus.erl as a (small) example (shallow inheritance tree,
and just a few attributes), by uncommenting traces in the class manager, we
can see that the size of the class_Platypus virtual table is 1040 bytes.

At runtime, after its full construction, the total size of a Platypus instance
(i.e. the overall size of its corresponding process) is 8712 bytes.

Knowing that (with OTP 23, AMD64 on GNU/Linux) the size of a blank
process is 2688 bytes?®, the actual payload specific to this instance is 8712-2688=6024
bytes (and the virtual table accounts for roughly 17% of it).

After having used the persistent term module (see our persistent_term
branch) to share these (immutable) per-class virtual tables, the size of the same
test Platypus instance became 6840 bytes, corresponding thus to a per-instance
shrinking of 8712-6840=1872 bytes here.

When the class manager registers (once for all) the class Platypus virtual
table, the size of the persistent term registry grows of 1072 bytes (which is
consistent with a virtual table of 1040 bytes).

Attribute Table

This is another associative table, this time necessarily per-instance.

Keys are attribute names of that instance, values are the corresponding
attribute values.

It allows a simple, seamless yet efficient access to all data members, including
inherited ones.

27Provided that Erlang does not copy these shared immutable structures, which unfortu-
nately does not seem to be currently the case with the vanilla virtual machine. In a later
version of WOOPER, the per-class table will be precompiled and shared as a module, thus
fully removing that per-instance overhead.

28 Measured with P=spawn(basic_utils, freeze, []), then
basic_utils:get_process_size(P).

81

https://github.com/Olivier-Boudeville/Ceylan-WOOPER/blob/master/priv/examples/class_Platypus.erl
https://erlang.org/doc/man/persistent_term.html

Issues & Planned Enhancements

e integrate automatic persistent storage of instance states, for example in
Mnesia databases

e integrate specific constructs for code reflection

e check that a class specified in execute*As is indeed a (direct or not)
mother class of this one, at least in debug mode

e check that the declared attributes are legit (existing, not reserved, etc.)
and their access as well (e.g. regarding constness)

e support qualifier-based declarations of methods and attributes (public,
protected, private, final, const, pure, etc.)

e generate automatically a graphical class diagram out of the sources of a
set of projects (e.g. using PlantUML)

e ensure that all instances of a given class reference the same table dedicated
to the method look-ups, and do not have each their own private copy of it
(mere referencing is expected to result from single-assignment); storing a
per-class direct method mapping could also be done with prebuilt modules:
class_Cat would rely on an automatically generated class_Cat_mt (for
"method table") module, which would just be used in order to convert
a method name in the name of the module that should be called in the
context of that class, inheritance-wise; or, preferably, this information
could be added directly to class_Cat; note that this should be the case
now that the use of persistent_term has been integrated

82

http://plantuml.com/

Licence

Ceylan-WOOPER is licensed by its author (Olivier Boudeville) under a disjunc-
tive tri-license, giving you the choice of one of the three following sets of free
software /open source licensing terms:

e the Morzilla Public License (MPL), version 1.1 or later (very close to the
former Erlang Public License, except aspects regarding Ericsson and/or
the Swedish law)

e the GNU General Public License (GPL), version 3.0 or later
e the GNU Lesser General Public License (LGPL), version 3.0 or later

This allows the use of the WOOPER code in as wide a variety of software
projects as possible, while still maintaining copyleft on this code.

Being triple-licensed means that someone (the licensee) who modifies and /or
distributes it can choose which of the available sets of licence terms he is oper-
ating under.

We hope that enhancements will be back-contributed (e.g. thanks to merge
requests), so that everyone will be able to benefit from them.

83

http://www.mozilla.org/MPL/MPL-1.1.html
http://www.erlang.org/EPLICENSE
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/lgpl.html

Sources, Inspirations & Alternate Solutions

e Concurrent Programming in Erlang, Joe Armstrong, Robert Vird-
ing, Claes Wikstrom et Mike Williams. Chapter 18, page 299: Object-
oriented Programming. This book describes a simple way of implementing
multiple inheritance, without virtual table, at the expense of a (probably
slow) systematic method look-up (at each method call). No specific state
management is supported

e Chris Rathman’s approach to life cycle management and polymorphism ;
inheritance not supported

e ECT, an Object-Oriented Extension to Erlang, very promising yet appar-
ently not maintained anymore

e As Burkhard Neppert suggested, an alternative way of implementing OOP
here could be to use Erlang behaviours. This is the way OTP handles
generic functionalities that can be specialised (e.g. gen_server). One
approach could be to map each object-oriented base class to an Erlang
behaviour, and to make them cascade

e As mentioned by Niclas Eklund, despite relying on quite different op-
erating modes, WOOPER and Orber, an Erlang implementation of a
CORBA ORB (Object Request Broker) offer similar OOP features, as
CORBA IDL implies an object-oriented approach (with on OMG IDL to
Erlang Mapping)

WOOPER and Orber are rather different beasts, though: WOOPER is quite
lightweight (less than 25 000 lines of code, including blank lines, numerous com-
ments, tests and examples), does not involve a specific (IDL) compiler gen-
erating several stub/skeleton Erlang files, nor depends on OTP or on Mnesia
(but depends on Myriad), whereas Orber offers a full, standard, CORBA im-
plementation, including IDL language mapping, CosNaming, ITOP, Interface
Repository, etc.

Since Orber respects the OMG standard, integrating a new language (C/C++,
Java, Smalltalk, Ada, Lisp, Python etc.) should be rather easy. On the other
hand, if a full-blown CORBA-compliant middleware is not needed, if simplicity
and ease of understanding is a key point, then WOOPER could be preferred. If
unsure, give a try to both!

See also another IDL-based approach (otherwise not connected to CORBA),
the Generic Server Back-end (wrapper around gen_server; warning: probably
a dead link now).

The WOOPER name is also a tribute to the vastly underrated Wargames
movie (remember the WOPR, the NORAD central computer?) that the author
enjoyed a lot. It is as well a second-order tribute to the Double Whopper King
Size, which is a great hamburger indeed?’.

29Provided of course one is still fine with eating other animals (this is another topic).

84

http://www.angelfire.com/tx4/cus/shapes/erlang.html
http://www.erlang-factory.com/upload/presentations/162/ECT.pdf
http://www.erlang.org/doc/apps/ic/ch_erl_genserv.html#5
http://en.wikipedia.org/wiki/WarGames
http://en.wikipedia.org/wiki/WOPR

Support

Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this longer document.

Please React!

If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word

Have fun with Ceylan-WOOPER!

WOO+FER

85

https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER/issues

	Table of Contents
	Overview
	Understanding WOOPER in Two Steps
	Motivations & Purpose
	The WOOPER Mode of Operation in a Nutshell
	Example

	Why Adding Object-Oriented Capabilities To Erlang?
	How to Use WOOPER: Detailed Description & Concept Mappings
	Classes
	Classes & Names
	Class Description
	Inheritance & Superclasses

	Instances
	Instance Mapping
	Instance State

	Methods
	Method Declaration
	Method Invocation
	Method Name
	Method Parameters
	Two Kinds of Member Methods
	Request Methods
	Oneway Methods

	Method Results
	Execution Success: {wooper_result,ActualResult}
	Execution Failures

	Method Definition
	For Requests
	For Oneways
	Usefulness Of the Method Terminators

	Self-Invocation: Calling a Method From the Instance Itself
	Inheritance-based Self-Invocation
	Self-Invocation of an Explicitly-Designated Method

	Static Methods

	State Management
	Principles
	State Implementation Details
	Instance Attributes

	Managing the State of an Instance
	Modifying State
	Reading State
	Read-Modify-Write Operations

	Multiple Inheritance & Polymorphism
	The General Case
	The Special Case of Diamond-Shaped Inheritance
	Principle
	Modelling & Implementation Choices

	Interfaces: to be able to favour Composition over Inheritance

	Life-Cycle
	Instance Creation: new/new_link and construct
	Role of a new /construct Pair
	The Various Ways of Creating an Instance
	Some Examples of Instance Creation
	Definition of the construct Operator

	Instance Deletion
	Automatic Chaining Of Destructors
	Asynchronous Destruction: using destruct/1
	Synchronous Destruction: using synchronous_delete/1

	Passive Instances
	Serialisation
	Hot Code Update

	Miscellaneous Technical Points
	Helper vs Static
	Calling a Method Clause from Another
	Integrated Call APIs
	Single Calls
	Multi-Calls

	Methods Not Returning Anything of Interest
	Methods Not Returning
	Exception-Throwing Methods
	delete_any_instance_referenced_in/2
	EXIT Signals / Messages
	DOWN Messages for Process Monitors
	Node Monitors
	A bit of Introspection
	Developer Guidelines
	General Guidelines
	OTP Guidelines

	WOOPER API
	Class Developer Cheat Sheet
	Source Editors
	Similarity With Other Languages
	WOOPER limitations

	WOOPER Example
	Class implementations
	Tests

	Good Practices
	Supported Platforms
	Troubleshooting
	Debug Mode
	"No attribute declaration found" whereas a class_attributes define exists
	Compilation Error Pointing to wooper_for_classes.hrl
	General Case
	Compilation Warnings
	Runtime Errors
	Mismatches In Method Call
	Error With Exit Value: {undef,[{map_hashtable,new,[..]}..

	Current Stable Version & Download
	Prerequisites
	Using Cutting-Edge GIT
	Using OTP-Related Build/Runtime Conventions
	Using Rebar3

	Using Hex
	Testing WOOPER

	Version History & Changes
	Version 2.0 [current stable]
	Version 1.x
	Version 1.0
	Version 0.4
	Version 0.3
	Version 0.2
	Version 0.1

	WOOPER Inner Workings
	General Principles
	Understanding Compilation
	Understanding the Mode of Operation of a WOOPER Instance

	Method Virtual Table
	General Principle

	Attribute Table

	Issues & Planned Enhancements
	Licence
	Sources, Inspirations & Alternate Solutions
	Support
	Please React!
	Ending Word

